Cargando…
Automatic lesion detection and segmentation of (18)F-FET PET in gliomas: A full 3D U-Net convolutional neural network study
INTRODUCTION: Amino-acids positron emission tomography (PET) is increasingly used in the diagnostic workup of patients with gliomas, including differential diagnosis, evaluation of tumor extension, treatment planning and follow-up. Recently, progresses of computer vision and machine learning have be...
Autores principales: | Blanc-Durand, Paul, Van Der Gucht, Axel, Schaefer, Niklaus, Itti, Emmanuel, Prior, John O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898737/ https://www.ncbi.nlm.nih.gov/pubmed/29652908 http://dx.doi.org/10.1371/journal.pone.0195798 |
Ejemplares similares
-
Voxel-based (18)F-FET PET segmentation and automatic clustering of tumor voxels: A significant association with IDH1 mutation status and survival in patients with gliomas
por: Blanc-Durand, Paul, et al.
Publicado: (2018) -
Signature of survival: a (18)F-FDG PET based whole-liver radiomic analysis predicts survival after (90)Y-TARE for hepatocellular carcinoma
por: Blanc-Durand, Paul, et al.
Publicado: (2017) -
Fet-Net Algorithm for Automatic Detection of Fetal Orientation in Fetal MRI
por: Eisenstat, Joshua, et al.
Publicado: (2023) -
FetNet: a recurrent convolutional network for occlusion identification in fetoscopic videos
por: Bano, Sophia, et al.
Publicado: (2020) -
Predicting IDH genotype in gliomas using FET PET radiomics
por: Lohmann, Philipp, et al.
Publicado: (2018)