Cargando…
Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898831/ https://www.ncbi.nlm.nih.gov/pubmed/29662953 http://dx.doi.org/10.1126/sciadv.aaq1566 |
_version_ | 1783314194758631424 |
---|---|
author | Ren, Fang Ward, Logan Williams, Travis Laws, Kevin J. Wolverton, Christopher Hattrick-Simpers, Jason Mehta, Apurva |
author_facet | Ren, Fang Ward, Logan Williams, Travis Laws, Kevin J. Wolverton, Christopher Hattrick-Simpers, Jason Mehta, Apurva |
author_sort | Ren, Fang |
collection | PubMed |
description | With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, but there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict. |
format | Online Article Text |
id | pubmed-5898831 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58988312018-04-16 Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments Ren, Fang Ward, Logan Williams, Travis Laws, Kevin J. Wolverton, Christopher Hattrick-Simpers, Jason Mehta, Apurva Sci Adv Research Articles With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, but there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict. American Association for the Advancement of Science 2018-04-13 /pmc/articles/PMC5898831/ /pubmed/29662953 http://dx.doi.org/10.1126/sciadv.aaq1566 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Ren, Fang Ward, Logan Williams, Travis Laws, Kevin J. Wolverton, Christopher Hattrick-Simpers, Jason Mehta, Apurva Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments |
title | Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments |
title_full | Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments |
title_fullStr | Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments |
title_full_unstemmed | Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments |
title_short | Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments |
title_sort | accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898831/ https://www.ncbi.nlm.nih.gov/pubmed/29662953 http://dx.doi.org/10.1126/sciadv.aaq1566 |
work_keys_str_mv | AT renfang accelerateddiscoveryofmetallicglassesthroughiterationofmachinelearningandhighthroughputexperiments AT wardlogan accelerateddiscoveryofmetallicglassesthroughiterationofmachinelearningandhighthroughputexperiments AT williamstravis accelerateddiscoveryofmetallicglassesthroughiterationofmachinelearningandhighthroughputexperiments AT lawskevinj accelerateddiscoveryofmetallicglassesthroughiterationofmachinelearningandhighthroughputexperiments AT wolvertonchristopher accelerateddiscoveryofmetallicglassesthroughiterationofmachinelearningandhighthroughputexperiments AT hattricksimpersjason accelerateddiscoveryofmetallicglassesthroughiterationofmachinelearningandhighthroughputexperiments AT mehtaapurva accelerateddiscoveryofmetallicglassesthroughiterationofmachinelearningandhighthroughputexperiments |