Cargando…
Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially...
Autores principales: | Ren, Fang, Ward, Logan, Williams, Travis, Laws, Kevin J., Wolverton, Christopher, Hattrick-Simpers, Jason, Mehta, Apurva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898831/ https://www.ncbi.nlm.nih.gov/pubmed/29662953 http://dx.doi.org/10.1126/sciadv.aaq1566 |
Ejemplares similares
-
Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys
por: Wang, Yafei, et al.
Publicado: (2022) -
Characterization data of an (AlFeNiTiVZr)(1-x)Cr(x) multi-principal element alloy continuous composition spread library
por: Ruiz-Yi, Benjamin, et al.
Publicado: (2021) -
Exploiting redundancy in large materials datasets for efficient machine learning with less data
por: Li, Kangming, et al.
Publicado: (2023) -
On-the-fly closed-loop materials discovery via Bayesian active learning
por: Kusne, A. Gilad, et al.
Publicado: (2020) -
Automated Discovery of Novel Drug Formulations Using Predictive Iterated High Throughput Experimentation
por: Caschera, Filippo, et al.
Publicado: (2010)