Cargando…

Identities associated with Milne–Thomson type polynomials and special numbers

The purpose of this paper is to give identities and relations including the Milne–Thomson polynomials, the Hermite polynomials, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the central factorial numbers, and the Cauchy numbers. By using fermionic and bosonic p-adic integrals, we d...

Descripción completa

Detalles Bibliográficos
Autores principales: Simsek, Yilmaz, Cakic, Nenad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899131/
https://www.ncbi.nlm.nih.gov/pubmed/29674838
http://dx.doi.org/10.1186/s13660-018-1679-x
Descripción
Sumario:The purpose of this paper is to give identities and relations including the Milne–Thomson polynomials, the Hermite polynomials, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the central factorial numbers, and the Cauchy numbers. By using fermionic and bosonic p-adic integrals, we derive some new relations and formulas related to these numbers and polynomials, and also the combinatorial sums.