Cargando…

Parasitized Natural Killer cells do not facilitate the spread of Toxoplasma gondii to the brain

Toxoplasma gondii is a protozoan parasite capable of invading immune cells and co‐opting their migratory pathways to disseminate through the host. Natural Killer (NK) cells can be directly invaded by the parasite and this invasion alters NK cell migration, producing a hypermotile phenotype. However,...

Descripción completa

Detalles Bibliográficos
Autores principales: Petit‐Jentreau, L., Glover, C., Coombes, J. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5901034/
https://www.ncbi.nlm.nih.gov/pubmed/29478283
http://dx.doi.org/10.1111/pim.12522
Descripción
Sumario:Toxoplasma gondii is a protozoan parasite capable of invading immune cells and co‐opting their migratory pathways to disseminate through the host. Natural Killer (NK) cells can be directly invaded by the parasite and this invasion alters NK cell migration, producing a hypermotile phenotype. However, the consequences of this hypermotile phenotype for the dissemination of T. gondii to the brain remain unknown. To address this, C57BL6/J mice were infected with freshly egressed tachyzoites (type II Prugniaud strain) or with parasitized NK cells. Under both conditions, parasite loads in the brain were comparable, indicating that parasitized NK cells were not able to facilitate spread of T. gondii to the brain. Consistent with this, we found no evidence for the recruitment of endogenous NK cells to the brain at early time points post‐infection, nor any changes in the expression of α4β1 integrin, involved in recruitment of NK cells to the brain. We therefore found no evidence for a role for hypermotile NK cells in delivery of parasites to the brain during acute infection with T. gondii.