Cargando…

Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation

River flow fluctuation has an important influence on riparian vegetation dynamics. A temporally segmented stochastic model focusing on a same‐aged population is developed for the purpose of describing both spatial and temporal dynamics of riparian vegetation. In the model, the growth rate of populat...

Descripción completa

Detalles Bibliográficos
Autores principales: You, Xiaoguang, Liu, Jingling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5901219/
https://www.ncbi.nlm.nih.gov/pubmed/29686846
http://dx.doi.org/10.1002/ece3.3886
_version_ 1783314567812612096
author You, Xiaoguang
Liu, Jingling
author_facet You, Xiaoguang
Liu, Jingling
author_sort You, Xiaoguang
collection PubMed
description River flow fluctuation has an important influence on riparian vegetation dynamics. A temporally segmented stochastic model focusing on a same‐aged population is developed for the purpose of describing both spatial and temporal dynamics of riparian vegetation. In the model, the growth rate of population, rather than carrying capacity, is modeled as the random variable. This model has explicit physical meaning. The model deduces a process‐based solution. From the solution process, the probability density of spatial distribution can be derived; therefore, the spatial distribution of population abundance can be described. The lifespan of a same‐aged population and the age structure of the species‐specific population can also be studied with the aid of this temporally segmented model. The influence of correlation time of river flow fluctuation is also quantified according to the model. The calibration of model parameters and model application are discussed. The model provides a computer‐aided method to simulate and predict vegetation dynamics during river flow disturbances. Meanwhile, the model is open and allows for more accurate and concrete modeling of growth rate. Because of the Markov property involved in the process‐based solution, the model also has the ability to deal with cases of nonstationary disturbances.
format Online
Article
Text
id pubmed-5901219
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-59012192018-04-23 Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation You, Xiaoguang Liu, Jingling Ecol Evol Original Research River flow fluctuation has an important influence on riparian vegetation dynamics. A temporally segmented stochastic model focusing on a same‐aged population is developed for the purpose of describing both spatial and temporal dynamics of riparian vegetation. In the model, the growth rate of population, rather than carrying capacity, is modeled as the random variable. This model has explicit physical meaning. The model deduces a process‐based solution. From the solution process, the probability density of spatial distribution can be derived; therefore, the spatial distribution of population abundance can be described. The lifespan of a same‐aged population and the age structure of the species‐specific population can also be studied with the aid of this temporally segmented model. The influence of correlation time of river flow fluctuation is also quantified according to the model. The calibration of model parameters and model application are discussed. The model provides a computer‐aided method to simulate and predict vegetation dynamics during river flow disturbances. Meanwhile, the model is open and allows for more accurate and concrete modeling of growth rate. Because of the Markov property involved in the process‐based solution, the model also has the ability to deal with cases of nonstationary disturbances. John Wiley and Sons Inc. 2018-03-05 /pmc/articles/PMC5901219/ /pubmed/29686846 http://dx.doi.org/10.1002/ece3.3886 Text en © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
You, Xiaoguang
Liu, Jingling
Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation
title Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation
title_full Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation
title_fullStr Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation
title_full_unstemmed Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation
title_short Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation
title_sort modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5901219/
https://www.ncbi.nlm.nih.gov/pubmed/29686846
http://dx.doi.org/10.1002/ece3.3886
work_keys_str_mv AT youxiaoguang modelingthespatialandtemporaldynamicsofriparianvegetationinducedbyriverflowfluctuation
AT liujingling modelingthespatialandtemporaldynamicsofriparianvegetationinducedbyriverflowfluctuation