Cargando…

Mutations in the PH Domain of DNM1 are associated with a nonepileptic phenotype characterized by developmental delay and neurobehavioral abnormalities

BACKGROUND: Dynamin 1 is a protein involved in the synaptic vesicle cycle, which facilitates the exocytosis of neurotransmitters necessary for normal signaling and development in the central nervous system. Pathogenic variants in DNM1 have been implicated in global developmental delay (DD), severe i...

Descripción completa

Detalles Bibliográficos
Autores principales: Brereton, Emily, Fassi, Emily, Araujo, Gabriel C., Dodd, Jonathan, Telegrafi, Aida, Pathak, Sheel J., Shinawi, Marwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902389/
https://www.ncbi.nlm.nih.gov/pubmed/29397573
http://dx.doi.org/10.1002/mgg3.362
Descripción
Sumario:BACKGROUND: Dynamin 1 is a protein involved in the synaptic vesicle cycle, which facilitates the exocytosis of neurotransmitters necessary for normal signaling and development in the central nervous system. Pathogenic variants in DNM1 have been implicated in global developmental delay (DD), severe intellectual disability (ID), and notably, epileptic encephalopathy. All previously reported DNM1 pathogenic variants causing this severe phenotype occur in the GTPase and Middle domains of the dynamin 1 protein. METHODS: We used whole‐exome sequencing to characterize the molecular basis of DD and autistic symptoms in two identical siblings. RESULTS: The twin siblings exhibit mild to moderate ID and autistic symptoms but no epileptic encephalopathy. Exome sequencing revealed a genetic variant, c.1603A>G (p.Lys535Glu), in the PH domain of dynamin 1. Previous in vitro studies showed that mutations at Lys535 inhibit endocytosis and impair PH loop binding to PIP2. CONCLUSIONS: Our data suggest a previously undescribed milder phenotype associated with a missense genetic variant in the PH domain of dynamin 1.