Cargando…

Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.12...

Descripción completa

Detalles Bibliográficos
Autores principales: Dalke, Claudia, Neff, Frauke, Bains, Savneet Kaur, Bright, Scott, Lord, Deborah, Reitmeir, Peter, Rößler, Ute, Samaga, Daniel, Unger, Kristian, Braselmann, Herbert, Wagner, Florian, Greiter, Matthias, Gomolka, Maria, Hornhardt, Sabine, Kunze, Sarah, Kempf, Stefan J., Garrett, Lillian, Hölter, Sabine M., Wurst, Wolfgang, Rosemann, Michael, Azimzadeh, Omid, Tapio, Soile, Aubele, Michaela, Theis, Fabian, Hoeschen, Christoph, Slijepcevic, Predrag, Kadhim, Munira, Atkinson, Michael, Zitzelsberger, Horst, Kulka, Ulrike, Graw, Jochen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902533/
https://www.ncbi.nlm.nih.gov/pubmed/29327260
http://dx.doi.org/10.1007/s00411-017-0728-z
Descripción
Sumario:Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00411-017-0728-z) contains supplementary material, which is available to authorized users.