Cargando…

CX3CL1/CX3CR1 Axis, as the Therapeutic Potential in Renal Diseases: Friend or Foe?

The fractalkine receptor chemokine (C-X3-C motif) receptor 1 (CX3CR1) and its highly se-lective ligand CX3CL1 mediate chemotaxis and adhesion of immune cells, which are involved in the pathogenesis and progression of numerous inflammatory disorders and malignancies. The CX3CL1/CX3CR1 axis has recent...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuang, Quan, Cheng, Ke, Ming, Yingzi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902862/
https://www.ncbi.nlm.nih.gov/pubmed/29446734
http://dx.doi.org/10.2174/1566523218666180214092536
Descripción
Sumario:The fractalkine receptor chemokine (C-X3-C motif) receptor 1 (CX3CR1) and its highly se-lective ligand CX3CL1 mediate chemotaxis and adhesion of immune cells, which are involved in the pathogenesis and progression of numerous inflammatory disorders and malignancies. The CX3CL1/CX3CR1 axis has recently drawn attention as a potential therapeutic target because it is in-volved in the ontogeny, homeostatic migration, or colonization of renal phagocytes. We performed a Medline/PubMed search to detect recently published studies that explored the relationship between the CX3CL1/CX3CR1 axis and renal diseases and disorders, including diabetic nephropathy, renal allograft rejection, infectious renal diseases, IgA nephropathy, fibrotic kidney disease, lupus nephritis and glo-merulonephritis, acute kidney injury and renal carcinoma. Most studies demonstrated its role in promot-ing renal pathopoiesis; however, several recent studies showed that the CX3CL1/CX3CR1 axis could also reduce renal pathopoiesis. Thus, the CX3CL1/CX3CR1 axis is now considered to be a double-edged sword that could provide novel perspectives into the pathogenesis and treatment of renal diseases and disorders.