Cargando…
A general prediction model for the detection of ADHD and Autism using structural and functional MRI
This work presents a novel method for learning a model that can diagnose Attention Deficit Hyperactivity Disorder (ADHD), as well as Autism, using structural texture and functional connectivity features obtained from 3-dimensional structural magnetic resonance imaging (MRI) and 4-dimensional resting...
Autores principales: | Sen, Bhaskar, Borle, Neil C., Greiner, Russell, Brown, Matthew R. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903601/ https://www.ncbi.nlm.nih.gov/pubmed/29664902 http://dx.doi.org/10.1371/journal.pone.0194856 |
Ejemplares similares
-
Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism
por: Ghiassian, Sina, et al.
Publicado: (2016) -
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
por: Sidhu, Gagan S., et al.
Publicado: (2012) -
ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
por: Brown, Matthew R. G., et al.
Publicado: (2012) -
Structural Covariance Networks in Children with Autism or ADHD
por: Bethlehem, R. A. I., et al.
Publicado: (2017) -
Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia
por: Cundari, Maurizio, et al.
Publicado: (2023)