Cargando…
Linear self-assembly and grafting of gold nanorods into arrayed micrometer-long nanowires on a silicon wafer via a combined top-down/bottom-up approach
Macroscopically long wire-like arrangements of gold nanoparticles were obtained by controlled evaporation and partial coalescence of an aqueous colloidal solution of capped CTAB-Au nanorods onto a functionalised 3-mercaptopropyl trimethoxysilane (MPTMS) silicon substrate, using a removable, silicon...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903609/ https://www.ncbi.nlm.nih.gov/pubmed/29664920 http://dx.doi.org/10.1371/journal.pone.0195859 |
Sumario: | Macroscopically long wire-like arrangements of gold nanoparticles were obtained by controlled evaporation and partial coalescence of an aqueous colloidal solution of capped CTAB-Au nanorods onto a functionalised 3-mercaptopropyl trimethoxysilane (MPTMS) silicon substrate, using a removable, silicon wafer with a hydrophobic surface that serves as a “handrail” for the initial nanorods’ linear self-assembly. The wire-like structures display a quasi-continuous pattern by thermal annealing of the gold nanorods when the solvent (i.e. water) is evaporated at temperatures rising from 20°C to 140°C. Formation of both single and self-replicating parallel 1D-superstructures consisting of two or even three wires is observed and explained under such conditions. |
---|