Cargando…
The long non-coding RNA uc.4 influences cell differentiation through the TGF-beta signaling pathway
In a previous study, we screened thousands of long non-coding RNAs (lncRNAs) to assess their potential relationship with congenital heart disease (CHD). In this study, uc.4 attracted our attention because of its high level of evolutionary conservation and its antisense orientation to the CASZ1 gene,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903826/ https://www.ncbi.nlm.nih.gov/pubmed/29504607 http://dx.doi.org/10.1038/emm.2017.278 |
Sumario: | In a previous study, we screened thousands of long non-coding RNAs (lncRNAs) to assess their potential relationship with congenital heart disease (CHD). In this study, uc.4 attracted our attention because of its high level of evolutionary conservation and its antisense orientation to the CASZ1 gene, which is vital for heart development. We explored the function of uc.4 in cells and in zebrafish, and describe a potential mechanism of action. P19 cells were used to investigate the function of uc.4. We studied the effect of uc.4 overexpression on heart development in zebrafish. The overexpression of uc.4 influenced cell differentiation by inhibiting the TGF-beta signaling pathway and suppressed heart development in zebrafish, resulting in cardiac malformation. Taken together, our findings show that uc.4 is involved in heart development, thus providing a potential therapeutic target for CHD. |
---|