Cargando…
A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus
Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical complications have brought much interest in fast and reliable screening methods for ZIKV (Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-PCR) is currently the method of choice to dete...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904215/ https://www.ncbi.nlm.nih.gov/pubmed/29696139 http://dx.doi.org/10.3389/fbioe.2018.00031 |
_version_ | 1783315056154378240 |
---|---|
author | Melo, Carlos Fernando Odir Rodrigues Navarro, Luiz Claudio de Oliveira, Diogo Noin Guerreiro, Tatiane Melina Lima, Estela de Oliveira Delafiori, Jeany Dabaja, Mohamed Ziad Ribeiro, Marta da Silva de Menezes, Maico Rodrigues, Rafael Gustavo Martins Morishita, Karen Noda Esteves, Cibele Zanardi de Amorim, Aline Lopes Lucas Aoyagui, Caroline Tiemi Parise, Pierina Lorencini Milanez, Guilherme Paier do Nascimento, Gabriela Mansano Ribas Freitas, André Ricardo Angerami, Rodrigo Costa, Fábio Trindade Maranhão Arns, Clarice Weis Resende, Mariangela Ribeiro Amaral, Eliana Junior, Renato Passini Ribeiro-do-Valle, Carolina C. Milanez, Helaine Moretti, Maria Luiza Proenca-Modena, Jose Luiz Avila, Sandra Rocha, Anderson Catharino, Rodrigo Ramos |
author_facet | Melo, Carlos Fernando Odir Rodrigues Navarro, Luiz Claudio de Oliveira, Diogo Noin Guerreiro, Tatiane Melina Lima, Estela de Oliveira Delafiori, Jeany Dabaja, Mohamed Ziad Ribeiro, Marta da Silva de Menezes, Maico Rodrigues, Rafael Gustavo Martins Morishita, Karen Noda Esteves, Cibele Zanardi de Amorim, Aline Lopes Lucas Aoyagui, Caroline Tiemi Parise, Pierina Lorencini Milanez, Guilherme Paier do Nascimento, Gabriela Mansano Ribas Freitas, André Ricardo Angerami, Rodrigo Costa, Fábio Trindade Maranhão Arns, Clarice Weis Resende, Mariangela Ribeiro Amaral, Eliana Junior, Renato Passini Ribeiro-do-Valle, Carolina C. Milanez, Helaine Moretti, Maria Luiza Proenca-Modena, Jose Luiz Avila, Sandra Rocha, Anderson Catharino, Rodrigo Ramos |
author_sort | Melo, Carlos Fernando Odir Rodrigues |
collection | PubMed |
description | Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical complications have brought much interest in fast and reliable screening methods for ZIKV (Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-PCR) is currently the method of choice to detect ZIKV in biological samples. This approach, nonetheless, demands a considerable amount of time and resources such as kits and reagents that, in endemic areas, may result in a substantial financial burden over affected individuals and health services veering away from RT-PCR analysis. This study presents a powerful combination of high-resolution mass spectrometry and a machine-learning prediction model for data analysis to assess the existence of ZIKV infection across a series of patients that bear similar symptomatic conditions, but not necessarily are infected with the disease. By using mass spectrometric data that are inputted with the developed decision-making algorithm, we were able to provide a set of features that work as a “fingerprint” for this specific pathophysiological condition, even after the acute phase of infection. Since both mass spectrometry and machine learning approaches are well-established and have largely utilized tools within their respective fields, this combination of methods emerges as a distinct alternative for clinical applications, providing a diagnostic screening—faster and more accurate—with improved cost-effectiveness when compared to existing technologies. |
format | Online Article Text |
id | pubmed-5904215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59042152018-04-25 A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus Melo, Carlos Fernando Odir Rodrigues Navarro, Luiz Claudio de Oliveira, Diogo Noin Guerreiro, Tatiane Melina Lima, Estela de Oliveira Delafiori, Jeany Dabaja, Mohamed Ziad Ribeiro, Marta da Silva de Menezes, Maico Rodrigues, Rafael Gustavo Martins Morishita, Karen Noda Esteves, Cibele Zanardi de Amorim, Aline Lopes Lucas Aoyagui, Caroline Tiemi Parise, Pierina Lorencini Milanez, Guilherme Paier do Nascimento, Gabriela Mansano Ribas Freitas, André Ricardo Angerami, Rodrigo Costa, Fábio Trindade Maranhão Arns, Clarice Weis Resende, Mariangela Ribeiro Amaral, Eliana Junior, Renato Passini Ribeiro-do-Valle, Carolina C. Milanez, Helaine Moretti, Maria Luiza Proenca-Modena, Jose Luiz Avila, Sandra Rocha, Anderson Catharino, Rodrigo Ramos Front Bioeng Biotechnol Bioengineering and Biotechnology Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical complications have brought much interest in fast and reliable screening methods for ZIKV (Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-PCR) is currently the method of choice to detect ZIKV in biological samples. This approach, nonetheless, demands a considerable amount of time and resources such as kits and reagents that, in endemic areas, may result in a substantial financial burden over affected individuals and health services veering away from RT-PCR analysis. This study presents a powerful combination of high-resolution mass spectrometry and a machine-learning prediction model for data analysis to assess the existence of ZIKV infection across a series of patients that bear similar symptomatic conditions, but not necessarily are infected with the disease. By using mass spectrometric data that are inputted with the developed decision-making algorithm, we were able to provide a set of features that work as a “fingerprint” for this specific pathophysiological condition, even after the acute phase of infection. Since both mass spectrometry and machine learning approaches are well-established and have largely utilized tools within their respective fields, this combination of methods emerges as a distinct alternative for clinical applications, providing a diagnostic screening—faster and more accurate—with improved cost-effectiveness when compared to existing technologies. Frontiers Media S.A. 2018-04-11 /pmc/articles/PMC5904215/ /pubmed/29696139 http://dx.doi.org/10.3389/fbioe.2018.00031 Text en Copyright © 2018 Melo, Navarro, de Oliveira, Guerreiro, Lima, Delafiori, Dabaja, Ribeiro, de Menezes, Rodrigues, Morishita, Esteves, de Amorim, Aoyagui, Parise, Milanez, do Nascimento, Ribas Freitas, Angerami, Costa, Arns, Resende, Amaral, Junior, Ribeiro-do-Valle, Milanez, Moretti, Proenca-Modena, Avila, Rocha and Catharino. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Melo, Carlos Fernando Odir Rodrigues Navarro, Luiz Claudio de Oliveira, Diogo Noin Guerreiro, Tatiane Melina Lima, Estela de Oliveira Delafiori, Jeany Dabaja, Mohamed Ziad Ribeiro, Marta da Silva de Menezes, Maico Rodrigues, Rafael Gustavo Martins Morishita, Karen Noda Esteves, Cibele Zanardi de Amorim, Aline Lopes Lucas Aoyagui, Caroline Tiemi Parise, Pierina Lorencini Milanez, Guilherme Paier do Nascimento, Gabriela Mansano Ribas Freitas, André Ricardo Angerami, Rodrigo Costa, Fábio Trindade Maranhão Arns, Clarice Weis Resende, Mariangela Ribeiro Amaral, Eliana Junior, Renato Passini Ribeiro-do-Valle, Carolina C. Milanez, Helaine Moretti, Maria Luiza Proenca-Modena, Jose Luiz Avila, Sandra Rocha, Anderson Catharino, Rodrigo Ramos A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus |
title | A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus |
title_full | A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus |
title_fullStr | A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus |
title_full_unstemmed | A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus |
title_short | A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus |
title_sort | machine learning application based in random forest for integrating mass spectrometry-based metabolomic data: a simple screening method for patients with zika virus |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904215/ https://www.ncbi.nlm.nih.gov/pubmed/29696139 http://dx.doi.org/10.3389/fbioe.2018.00031 |
work_keys_str_mv | AT melocarlosfernandoodirrodrigues amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT navarroluizclaudio amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT deoliveiradiogonoin amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT guerreirotatianemelina amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT limaesteladeoliveira amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT delafiorijeany amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT dabajamohamedziad amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT ribeiromartadasilva amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT demenezesmaico amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT rodriguesrafaelgustavomartins amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT morishitakarennoda amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT estevescibelezanardi amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT deamorimalinelopeslucas amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT aoyaguicarolinetiemi amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT parisepierinalorencini amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT milanezguilhermepaier amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT donascimentogabrielamansano amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT ribasfreitasandrericardo amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT angeramirodrigo amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT costafabiotrindademaranhao amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT arnsclariceweis amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT resendemariangelaribeiro amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT amaraleliana amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT juniorrenatopassini amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT ribeirodovallecarolinac amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT milanezhelaine amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT morettimarialuiza amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT proencamodenajoseluiz amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT avilasandra amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT rochaanderson amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT catharinorodrigoramos amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT melocarlosfernandoodirrodrigues machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT navarroluizclaudio machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT deoliveiradiogonoin machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT guerreirotatianemelina machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT limaesteladeoliveira machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT delafiorijeany machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT dabajamohamedziad machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT ribeiromartadasilva machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT demenezesmaico machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT rodriguesrafaelgustavomartins machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT morishitakarennoda machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT estevescibelezanardi machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT deamorimalinelopeslucas machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT aoyaguicarolinetiemi machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT parisepierinalorencini machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT milanezguilhermepaier machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT donascimentogabrielamansano machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT ribasfreitasandrericardo machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT angeramirodrigo machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT costafabiotrindademaranhao machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT arnsclariceweis machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT resendemariangelaribeiro machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT amaraleliana machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT juniorrenatopassini machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT ribeirodovallecarolinac machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT milanezhelaine machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT morettimarialuiza machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT proencamodenajoseluiz machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT avilasandra machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT rochaanderson machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus AT catharinorodrigoramos machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus |