Cargando…

A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus

Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical complications have brought much interest in fast and reliable screening methods for ZIKV (Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-PCR) is currently the method of choice to dete...

Descripción completa

Detalles Bibliográficos
Autores principales: Melo, Carlos Fernando Odir Rodrigues, Navarro, Luiz Claudio, de Oliveira, Diogo Noin, Guerreiro, Tatiane Melina, Lima, Estela de Oliveira, Delafiori, Jeany, Dabaja, Mohamed Ziad, Ribeiro, Marta da Silva, de Menezes, Maico, Rodrigues, Rafael Gustavo Martins, Morishita, Karen Noda, Esteves, Cibele Zanardi, de Amorim, Aline Lopes Lucas, Aoyagui, Caroline Tiemi, Parise, Pierina Lorencini, Milanez, Guilherme Paier, do Nascimento, Gabriela Mansano, Ribas Freitas, André Ricardo, Angerami, Rodrigo, Costa, Fábio Trindade Maranhão, Arns, Clarice Weis, Resende, Mariangela Ribeiro, Amaral, Eliana, Junior, Renato Passini, Ribeiro-do-Valle, Carolina C., Milanez, Helaine, Moretti, Maria Luiza, Proenca-Modena, Jose Luiz, Avila, Sandra, Rocha, Anderson, Catharino, Rodrigo Ramos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904215/
https://www.ncbi.nlm.nih.gov/pubmed/29696139
http://dx.doi.org/10.3389/fbioe.2018.00031
_version_ 1783315056154378240
author Melo, Carlos Fernando Odir Rodrigues
Navarro, Luiz Claudio
de Oliveira, Diogo Noin
Guerreiro, Tatiane Melina
Lima, Estela de Oliveira
Delafiori, Jeany
Dabaja, Mohamed Ziad
Ribeiro, Marta da Silva
de Menezes, Maico
Rodrigues, Rafael Gustavo Martins
Morishita, Karen Noda
Esteves, Cibele Zanardi
de Amorim, Aline Lopes Lucas
Aoyagui, Caroline Tiemi
Parise, Pierina Lorencini
Milanez, Guilherme Paier
do Nascimento, Gabriela Mansano
Ribas Freitas, André Ricardo
Angerami, Rodrigo
Costa, Fábio Trindade Maranhão
Arns, Clarice Weis
Resende, Mariangela Ribeiro
Amaral, Eliana
Junior, Renato Passini
Ribeiro-do-Valle, Carolina C.
Milanez, Helaine
Moretti, Maria Luiza
Proenca-Modena, Jose Luiz
Avila, Sandra
Rocha, Anderson
Catharino, Rodrigo Ramos
author_facet Melo, Carlos Fernando Odir Rodrigues
Navarro, Luiz Claudio
de Oliveira, Diogo Noin
Guerreiro, Tatiane Melina
Lima, Estela de Oliveira
Delafiori, Jeany
Dabaja, Mohamed Ziad
Ribeiro, Marta da Silva
de Menezes, Maico
Rodrigues, Rafael Gustavo Martins
Morishita, Karen Noda
Esteves, Cibele Zanardi
de Amorim, Aline Lopes Lucas
Aoyagui, Caroline Tiemi
Parise, Pierina Lorencini
Milanez, Guilherme Paier
do Nascimento, Gabriela Mansano
Ribas Freitas, André Ricardo
Angerami, Rodrigo
Costa, Fábio Trindade Maranhão
Arns, Clarice Weis
Resende, Mariangela Ribeiro
Amaral, Eliana
Junior, Renato Passini
Ribeiro-do-Valle, Carolina C.
Milanez, Helaine
Moretti, Maria Luiza
Proenca-Modena, Jose Luiz
Avila, Sandra
Rocha, Anderson
Catharino, Rodrigo Ramos
author_sort Melo, Carlos Fernando Odir Rodrigues
collection PubMed
description Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical complications have brought much interest in fast and reliable screening methods for ZIKV (Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-PCR) is currently the method of choice to detect ZIKV in biological samples. This approach, nonetheless, demands a considerable amount of time and resources such as kits and reagents that, in endemic areas, may result in a substantial financial burden over affected individuals and health services veering away from RT-PCR analysis. This study presents a powerful combination of high-resolution mass spectrometry and a machine-learning prediction model for data analysis to assess the existence of ZIKV infection across a series of patients that bear similar symptomatic conditions, but not necessarily are infected with the disease. By using mass spectrometric data that are inputted with the developed decision-making algorithm, we were able to provide a set of features that work as a “fingerprint” for this specific pathophysiological condition, even after the acute phase of infection. Since both mass spectrometry and machine learning approaches are well-established and have largely utilized tools within their respective fields, this combination of methods emerges as a distinct alternative for clinical applications, providing a diagnostic screening—faster and more accurate—with improved cost-effectiveness when compared to existing technologies.
format Online
Article
Text
id pubmed-5904215
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-59042152018-04-25 A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus Melo, Carlos Fernando Odir Rodrigues Navarro, Luiz Claudio de Oliveira, Diogo Noin Guerreiro, Tatiane Melina Lima, Estela de Oliveira Delafiori, Jeany Dabaja, Mohamed Ziad Ribeiro, Marta da Silva de Menezes, Maico Rodrigues, Rafael Gustavo Martins Morishita, Karen Noda Esteves, Cibele Zanardi de Amorim, Aline Lopes Lucas Aoyagui, Caroline Tiemi Parise, Pierina Lorencini Milanez, Guilherme Paier do Nascimento, Gabriela Mansano Ribas Freitas, André Ricardo Angerami, Rodrigo Costa, Fábio Trindade Maranhão Arns, Clarice Weis Resende, Mariangela Ribeiro Amaral, Eliana Junior, Renato Passini Ribeiro-do-Valle, Carolina C. Milanez, Helaine Moretti, Maria Luiza Proenca-Modena, Jose Luiz Avila, Sandra Rocha, Anderson Catharino, Rodrigo Ramos Front Bioeng Biotechnol Bioengineering and Biotechnology Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical complications have brought much interest in fast and reliable screening methods for ZIKV (Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-PCR) is currently the method of choice to detect ZIKV in biological samples. This approach, nonetheless, demands a considerable amount of time and resources such as kits and reagents that, in endemic areas, may result in a substantial financial burden over affected individuals and health services veering away from RT-PCR analysis. This study presents a powerful combination of high-resolution mass spectrometry and a machine-learning prediction model for data analysis to assess the existence of ZIKV infection across a series of patients that bear similar symptomatic conditions, but not necessarily are infected with the disease. By using mass spectrometric data that are inputted with the developed decision-making algorithm, we were able to provide a set of features that work as a “fingerprint” for this specific pathophysiological condition, even after the acute phase of infection. Since both mass spectrometry and machine learning approaches are well-established and have largely utilized tools within their respective fields, this combination of methods emerges as a distinct alternative for clinical applications, providing a diagnostic screening—faster and more accurate—with improved cost-effectiveness when compared to existing technologies. Frontiers Media S.A. 2018-04-11 /pmc/articles/PMC5904215/ /pubmed/29696139 http://dx.doi.org/10.3389/fbioe.2018.00031 Text en Copyright © 2018 Melo, Navarro, de Oliveira, Guerreiro, Lima, Delafiori, Dabaja, Ribeiro, de Menezes, Rodrigues, Morishita, Esteves, de Amorim, Aoyagui, Parise, Milanez, do Nascimento, Ribas Freitas, Angerami, Costa, Arns, Resende, Amaral, Junior, Ribeiro-do-Valle, Milanez, Moretti, Proenca-Modena, Avila, Rocha and Catharino. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Bioengineering and Biotechnology
Melo, Carlos Fernando Odir Rodrigues
Navarro, Luiz Claudio
de Oliveira, Diogo Noin
Guerreiro, Tatiane Melina
Lima, Estela de Oliveira
Delafiori, Jeany
Dabaja, Mohamed Ziad
Ribeiro, Marta da Silva
de Menezes, Maico
Rodrigues, Rafael Gustavo Martins
Morishita, Karen Noda
Esteves, Cibele Zanardi
de Amorim, Aline Lopes Lucas
Aoyagui, Caroline Tiemi
Parise, Pierina Lorencini
Milanez, Guilherme Paier
do Nascimento, Gabriela Mansano
Ribas Freitas, André Ricardo
Angerami, Rodrigo
Costa, Fábio Trindade Maranhão
Arns, Clarice Weis
Resende, Mariangela Ribeiro
Amaral, Eliana
Junior, Renato Passini
Ribeiro-do-Valle, Carolina C.
Milanez, Helaine
Moretti, Maria Luiza
Proenca-Modena, Jose Luiz
Avila, Sandra
Rocha, Anderson
Catharino, Rodrigo Ramos
A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus
title A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus
title_full A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus
title_fullStr A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus
title_full_unstemmed A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus
title_short A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus
title_sort machine learning application based in random forest for integrating mass spectrometry-based metabolomic data: a simple screening method for patients with zika virus
topic Bioengineering and Biotechnology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904215/
https://www.ncbi.nlm.nih.gov/pubmed/29696139
http://dx.doi.org/10.3389/fbioe.2018.00031
work_keys_str_mv AT melocarlosfernandoodirrodrigues amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT navarroluizclaudio amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT deoliveiradiogonoin amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT guerreirotatianemelina amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT limaesteladeoliveira amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT delafiorijeany amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT dabajamohamedziad amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT ribeiromartadasilva amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT demenezesmaico amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT rodriguesrafaelgustavomartins amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT morishitakarennoda amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT estevescibelezanardi amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT deamorimalinelopeslucas amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT aoyaguicarolinetiemi amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT parisepierinalorencini amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT milanezguilhermepaier amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT donascimentogabrielamansano amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT ribasfreitasandrericardo amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT angeramirodrigo amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT costafabiotrindademaranhao amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT arnsclariceweis amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT resendemariangelaribeiro amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT amaraleliana amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT juniorrenatopassini amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT ribeirodovallecarolinac amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT milanezhelaine amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT morettimarialuiza amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT proencamodenajoseluiz amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT avilasandra amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT rochaanderson amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT catharinorodrigoramos amachinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT melocarlosfernandoodirrodrigues machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT navarroluizclaudio machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT deoliveiradiogonoin machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT guerreirotatianemelina machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT limaesteladeoliveira machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT delafiorijeany machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT dabajamohamedziad machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT ribeiromartadasilva machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT demenezesmaico machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT rodriguesrafaelgustavomartins machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT morishitakarennoda machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT estevescibelezanardi machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT deamorimalinelopeslucas machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT aoyaguicarolinetiemi machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT parisepierinalorencini machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT milanezguilhermepaier machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT donascimentogabrielamansano machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT ribasfreitasandrericardo machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT angeramirodrigo machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT costafabiotrindademaranhao machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT arnsclariceweis machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT resendemariangelaribeiro machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT amaraleliana machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT juniorrenatopassini machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT ribeirodovallecarolinac machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT milanezhelaine machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT morettimarialuiza machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT proencamodenajoseluiz machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT avilasandra machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT rochaanderson machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus
AT catharinorodrigoramos machinelearningapplicationbasedinrandomforestforintegratingmassspectrometrybasedmetabolomicdataasimplescreeningmethodforpatientswithzikavirus