Cargando…
A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing
BACKGROUND: Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth, and mapping accuracy. With recent advances in NGS technology and software...
Autores principales: | van den Akker, Jeroen, Mishne, Gilad, Zimmer, Anjali D., Zhou, Alicia Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904977/ https://www.ncbi.nlm.nih.gov/pubmed/29665779 http://dx.doi.org/10.1186/s12864-018-4659-0 |
Ejemplares similares
-
LEAP: Using machine learning to support variant classification in a clinical setting
por: Lai, Carmen, et al.
Publicado: (2020) -
tarSVM: Improving the accuracy of variant calls derived from microfluidic PCR-based targeted next generation sequencing using a support vector machine
por: Gillies, Christopher E., et al.
Publicado: (2016) -
A study on fast calling variants from next-generation sequencing data using decision tree
por: Li, Zhentang, et al.
Publicado: (2018) -
ParticleCall: A particle filter for base calling in next-generation sequencing systems
por: Shen, Xiaohu, et al.
Publicado: (2012) -
Group-based variant calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies
por: Standish, Kristopher A., et al.
Publicado: (2015)