Cargando…
Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines
BACKGROUND: Several studies have applied ecological factors such as meteorological variables to develop models and accurately predict the temporal pattern of dengue incidence or occurrence. With the vast amount of studies that investigated this premise, the modeling approaches differ from each study...
Autores principales: | Carvajal, Thaddeus M., Viacrusis, Katherine M., Hernandez, Lara Fides T., Ho, Howell T., Amalin, Divina M., Watanabe, Kozo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905126/ https://www.ncbi.nlm.nih.gov/pubmed/29665781 http://dx.doi.org/10.1186/s12879-018-3066-0 |
Ejemplares similares
-
Fine-scale population genetic structure of dengue mosquito vector, Aedes aegypti, in Metropolitan Manila, Philippines
por: Carvajal, Thaddeus M., et al.
Publicado: (2020) -
Using Google Trends to Examine the Spatio-Temporal Incidence and Behavioral Patterns of Dengue Disease: A Case Study in Metropolitan Manila, Philippines
por: Ho, Howell T., et al.
Publicado: (2018) -
Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines
por: Carvajal, Thaddeus M., et al.
Publicado: (2019) -
The influence of roads on the fine-scale population genetic structure of the dengue vector Aedes aegypti (Linnaeus)
por: Regilme, Maria Angenica F., et al.
Publicado: (2021) -
Unraveling the Genetic Structure of the Coconut Scale Insect Pest (Aspidiotus rigidus Reyne) Outbreak Populations in the Philippines
por: Serrana, Joeselle M., et al.
Publicado: (2019)