Cargando…

Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy

In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip–sample forces genera...

Descripción completa

Detalles Bibliográficos
Autores principales: Nikfarjam, Miead, López-Guerra, Enrique A, Solares, Santiago D, Eslami, Babak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905250/
https://www.ncbi.nlm.nih.gov/pubmed/29719762
http://dx.doi.org/10.3762/bjnano.9.103
_version_ 1783315232949534720
author Nikfarjam, Miead
López-Guerra, Enrique A
Solares, Santiago D
Eslami, Babak
author_facet Nikfarjam, Miead
López-Guerra, Enrique A
Solares, Santiago D
Eslami, Babak
author_sort Nikfarjam, Miead
collection PubMed
description In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip–sample forces generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a short theoretical discussion of the key underlying concepts, along with numerical simulations and experiments to illustrate a simple recipe for imaging soft viscoelastic matter with reduced indentation.
format Online
Article
Text
id pubmed-5905250
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Beilstein-Institut
record_format MEDLINE/PubMed
spelling pubmed-59052502018-05-01 Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy Nikfarjam, Miead López-Guerra, Enrique A Solares, Santiago D Eslami, Babak Beilstein J Nanotechnol Full Research Paper In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip–sample forces generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a short theoretical discussion of the key underlying concepts, along with numerical simulations and experiments to illustrate a simple recipe for imaging soft viscoelastic matter with reduced indentation. Beilstein-Institut 2018-04-06 /pmc/articles/PMC5905250/ /pubmed/29719762 http://dx.doi.org/10.3762/bjnano.9.103 Text en Copyright © 2018, Nikfarjam et al. https://creativecommons.org/licenses/by/4.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)
spellingShingle Full Research Paper
Nikfarjam, Miead
López-Guerra, Enrique A
Solares, Santiago D
Eslami, Babak
Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy
title Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy
title_full Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy
title_fullStr Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy
title_full_unstemmed Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy
title_short Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy
title_sort imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy
topic Full Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905250/
https://www.ncbi.nlm.nih.gov/pubmed/29719762
http://dx.doi.org/10.3762/bjnano.9.103
work_keys_str_mv AT nikfarjammiead imagingofviscoelasticsoftmatterwithsmallindentationusinghighereigenmodesinsingleeigenmodeamplitudemodulationatomicforcemicroscopy
AT lopezguerraenriquea imagingofviscoelasticsoftmatterwithsmallindentationusinghighereigenmodesinsingleeigenmodeamplitudemodulationatomicforcemicroscopy
AT solaressantiagod imagingofviscoelasticsoftmatterwithsmallindentationusinghighereigenmodesinsingleeigenmodeamplitudemodulationatomicforcemicroscopy
AT eslamibabak imagingofviscoelasticsoftmatterwithsmallindentationusinghighereigenmodesinsingleeigenmodeamplitudemodulationatomicforcemicroscopy