Cargando…
Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state
The precise control over the organization of photoactive components at the nanoscale is one of the main challenges for the generation of new and sophisticated macroscopically ordered materials with enhanced properties. In this work we present a novel bioinspired approach using protein-based building...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905405/ https://www.ncbi.nlm.nih.gov/pubmed/29732049 http://dx.doi.org/10.1039/c6sc01306f |
_version_ | 1783315260840607744 |
---|---|
author | Mejías, Sara H. López-Andarias, Javier Sakurai, Tsuneaki Yoneda, Satoru Erazo, Kevin P. Seki, Shu Atienza, Carmen Martín, Nazario Cortajarena, Aitziber L. |
author_facet | Mejías, Sara H. López-Andarias, Javier Sakurai, Tsuneaki Yoneda, Satoru Erazo, Kevin P. Seki, Shu Atienza, Carmen Martín, Nazario Cortajarena, Aitziber L. |
author_sort | Mejías, Sara H. |
collection | PubMed |
description | The precise control over the organization of photoactive components at the nanoscale is one of the main challenges for the generation of new and sophisticated macroscopically ordered materials with enhanced properties. In this work we present a novel bioinspired approach using protein-based building blocks for the arrangement of photo- and electroactive porphyrin derivatives. We used a designed repeat protein scaffold with demonstrated unique features that allow for the control of their structure, functionality, and assembly. Our designed domains act as exact biomolecular templates to organize porphyrin molecules at the required distance. The hybrid conjugates retain the structure and assembly properties of the protein scaffold and display the spectroscopic features of orderly aggregated porphyrins along the protein structure. Finally, we achieved a solid ordered bio-organic hybrid thin film with anisotropic photoconductivity. |
format | Online Article Text |
id | pubmed-5905405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-59054052018-05-04 Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state Mejías, Sara H. López-Andarias, Javier Sakurai, Tsuneaki Yoneda, Satoru Erazo, Kevin P. Seki, Shu Atienza, Carmen Martín, Nazario Cortajarena, Aitziber L. Chem Sci Chemistry The precise control over the organization of photoactive components at the nanoscale is one of the main challenges for the generation of new and sophisticated macroscopically ordered materials with enhanced properties. In this work we present a novel bioinspired approach using protein-based building blocks for the arrangement of photo- and electroactive porphyrin derivatives. We used a designed repeat protein scaffold with demonstrated unique features that allow for the control of their structure, functionality, and assembly. Our designed domains act as exact biomolecular templates to organize porphyrin molecules at the required distance. The hybrid conjugates retain the structure and assembly properties of the protein scaffold and display the spectroscopic features of orderly aggregated porphyrins along the protein structure. Finally, we achieved a solid ordered bio-organic hybrid thin film with anisotropic photoconductivity. Royal Society of Chemistry 2016-08-01 2016-05-24 /pmc/articles/PMC5905405/ /pubmed/29732049 http://dx.doi.org/10.1039/c6sc01306f Text en This journal is © The Royal Society of Chemistry 2016 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Mejías, Sara H. López-Andarias, Javier Sakurai, Tsuneaki Yoneda, Satoru Erazo, Kevin P. Seki, Shu Atienza, Carmen Martín, Nazario Cortajarena, Aitziber L. Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state |
title | Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state
|
title_full | Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state
|
title_fullStr | Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state
|
title_full_unstemmed | Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state
|
title_short | Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state
|
title_sort | repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905405/ https://www.ncbi.nlm.nih.gov/pubmed/29732049 http://dx.doi.org/10.1039/c6sc01306f |
work_keys_str_mv | AT mejiassarah repeatproteinscaffoldsorderingphotoandelectroactivemoleculesinsolutionandsolidstate AT lopezandariasjavier repeatproteinscaffoldsorderingphotoandelectroactivemoleculesinsolutionandsolidstate AT sakuraitsuneaki repeatproteinscaffoldsorderingphotoandelectroactivemoleculesinsolutionandsolidstate AT yonedasatoru repeatproteinscaffoldsorderingphotoandelectroactivemoleculesinsolutionandsolidstate AT erazokevinp repeatproteinscaffoldsorderingphotoandelectroactivemoleculesinsolutionandsolidstate AT sekishu repeatproteinscaffoldsorderingphotoandelectroactivemoleculesinsolutionandsolidstate AT atienzacarmen repeatproteinscaffoldsorderingphotoandelectroactivemoleculesinsolutionandsolidstate AT martinnazario repeatproteinscaffoldsorderingphotoandelectroactivemoleculesinsolutionandsolidstate AT cortajarenaaitziberl repeatproteinscaffoldsorderingphotoandelectroactivemoleculesinsolutionandsolidstate |