Cargando…
Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach
MOTIVATION: Proteomics profiling is increasingly being used for molecular stratification of cancer patients and cell-line panels. However, systematic assessment of the predictive power of large-scale proteomic technologies across various drug classes and cancer types is currently lacking. To that en...
Autores principales: | Ali, Mehreen, Khan, Suleiman A, Wennerberg, Krister, Aittokallio, Tero |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905617/ https://www.ncbi.nlm.nih.gov/pubmed/29186355 http://dx.doi.org/10.1093/bioinformatics/btx766 |
Ejemplares similares
-
Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression
por: Ammad-ud-din, Muhammad, et al.
Publicado: (2017) -
A normalized drug response metric improves accuracy and consistency of anticancer drug sensitivity quantification in cell-based screening
por: Gupta, Abhishekh, et al.
Publicado: (2020) -
Tissue-specific identification of multi-omics features for pan-cancer drug response prediction
por: Zhao, Zhi, et al.
Publicado: (2022) -
From drug response profiling to target addiction scoring in cancer cell models
por: Yadav, Bhagwan, et al.
Publicado: (2015) -
TIMMA-R: an R package for predicting synergistic multi-targeted drug combinations in cancer cell lines or patient-derived samples
por: He, Liye, et al.
Publicado: (2015)