Cargando…
Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks
MOTIVATION: Regulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequence...
Autores principales: | Avsec, Žiga, Barekatain, Mohammadamin, Cheng, Jun, Gagneur, Julien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905632/ https://www.ncbi.nlm.nih.gov/pubmed/29155928 http://dx.doi.org/10.1093/bioinformatics/btx727 |
Ejemplares similares
-
Predicting mean ribosome load for 5’UTR of any length using deep learning
por: Karollus, Alexander, et al.
Publicado: (2021) -
Cis-regulatory elements explain most of the mRNA stability variation across genes in yeast
por: Cheng, Jun, et al.
Publicado: (2017) -
Polynomial, Neural Network, and Spline Wavelet Models for Continuous Wavelet Transform of Signals
por: Stepanov, Andrey
Publicado: (2021) -
MMSplice: modular modeling improves the predictions of genetic variant effects on splicing
por: Cheng, Jun, et al.
Publicado: (2019) -
Martingale inequalities for spline sequences
por: Passenbrunner, Markus
Publicado: (2019)