Cargando…
Supervised Machine Learning for Population Genetics: A New Paradigm
As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence dat...
Autores principales: | Schrider, Daniel R., Kern, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905713/ https://www.ncbi.nlm.nih.gov/pubmed/29331490 http://dx.doi.org/10.1016/j.tig.2017.12.005 |
Ejemplares similares
-
Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia
por: Schrider, Daniel R., et al.
Publicado: (2018) -
S/HIC: Robust Identification of Soft and Hard Sweeps Using Machine Learning
por: Schrider, Daniel R., et al.
Publicado: (2016) -
Discovery of Ongoing Selective Sweeps within Anopheles Mosquito Populations Using Deep Learning
por: Xue, Alexander T, et al.
Publicado: (2020) -
Inferring Selective Constraint from Population Genomic Data Suggests Recent Regulatory Turnover in the Human Brain
por: Schrider, Daniel R., et al.
Publicado: (2015) -
Discovering Functional DNA Elements Using Population Genomic Information: A Proof of Concept Using Human mtDNA
por: Schrider, Daniel R., et al.
Publicado: (2014)