Cargando…
Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project
This study evaluates and compares the performance of different machine learning techniques on predicting the individuals at risk of developing hypertension, and who are likely to benefit most from interventions, using the cardiorespiratory fitness data. The dataset of this study contains information...
Autores principales: | Sakr, Sherif, Elshawi, Radwa, Ahmed, Amjad, Qureshi, Waqas T., Brawner, Clinton, Keteyian, Steven, Blaha, Michael J., Al-Mallah, Mouaz H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905952/ https://www.ncbi.nlm.nih.gov/pubmed/29668729 http://dx.doi.org/10.1371/journal.pone.0195344 |
Ejemplares similares
-
Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project
por: Sakr, Sherif, et al.
Publicado: (2017) -
Systolic Blood Pressure Response During Exercise Stress Testing: The Henry Ford ExercIse Testing (FIT) Project
por: O’Neal, Wesley T, et al.
Publicado: (2015) -
Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project
por: Alghamdi, Manal, et al.
Publicado: (2017) -
Physical Fitness and Hypertension in a Population at Risk for Cardiovascular Disease: The Henry Ford ExercIse Testing (FIT) Project
por: Juraschek, Stephen P., et al.
Publicado: (2014) -
Higher cardiorespiratory fitness predicts long-term survival in patients with heart failure and preserved ejection fraction: the Henry Ford Exercise Testing (FIT) Project
por: Orimoloye, Olusola A., et al.
Publicado: (2019)