Cargando…

Automated fluid delivery from multiwell plates to microfluidic devices for high-throughput experiments and microscopy

High-throughput biological and chemical experiments typically use either multiwell plates or microfluidic devices to analyze numerous independent samples in a compact format. Multiwell plates are convenient for screening chemical libraries in static fluid environments, whereas microfluidic devices o...

Descripción completa

Detalles Bibliográficos
Autores principales: Lagoy, Ross C., Albrecht, Dirk R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906459/
https://www.ncbi.nlm.nih.gov/pubmed/29670202
http://dx.doi.org/10.1038/s41598-018-24504-x
Descripción
Sumario:High-throughput biological and chemical experiments typically use either multiwell plates or microfluidic devices to analyze numerous independent samples in a compact format. Multiwell plates are convenient for screening chemical libraries in static fluid environments, whereas microfluidic devices offer immense flexibility in flow control and dynamics. Interfacing these platforms in a simple and automated way would introduce new high-throughput experimental capabilities, such as compound screens with precise exposure timing. Whereas current approaches to integrate microfluidic devices with multiwell plates remain expensive or technically complicated, we present here a simple open-source robotic system that delivers liquids sequentially through a single connected inlet. We first characterized reliability and performance by automatically delivering 96 dye solutions to a microfluidic device. Next, we measured odor dose-response curves of in vivo neural activity from two sensory neuron types in dozens of living C. elegans in a single experiment. We then identified chemicals that suppressed optogenetically-evoked neural activity, demonstrating a functional screening platform for neural modulation in whole organisms. Lastly, we automated an 85-minute, ten-step cell staining protocol. Together, these examples show that our system can automate various protocols and accelerate experiments by economically bridging two common elements of high-throughput systems: multiwell plates and microfluidics.