Cargando…

Structural connectome with high angular resolution diffusion imaging MRI: assessing the impact of diffusion weighting and sampling on graph-theoretic measures

PURPOSE: Advances in computational network analysis have enabled the characterization of topological properties of human brain networks (connectomics) from high angular resolution diffusion imaging (HARDI) MRI structural measurements. In this study, the effect of changing the diffusion weighting (b...

Descripción completa

Detalles Bibliográficos
Autores principales: Caiazzo, Giuseppina, Fratello, Michele, Di Nardo, Federica, Trojsi, Francesca, Tedeschi, Gioacchino, Esposito, Fabrizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906499/
https://www.ncbi.nlm.nih.gov/pubmed/29520641
http://dx.doi.org/10.1007/s00234-018-2003-7
Descripción
Sumario:PURPOSE: Advances in computational network analysis have enabled the characterization of topological properties of human brain networks (connectomics) from high angular resolution diffusion imaging (HARDI) MRI structural measurements. In this study, the effect of changing the diffusion weighting (b value) and sampling (number of gradient directions) was investigated in ten healthy volunteers, with specific focus on graph theoretical network metrics used to characterize the human connectome. METHODS: Probabilistic tractography based on the Q-ball reconstruction of HARDI MRI measurements was performed and structural connections between all pairs of regions from the automated anatomical labeling (AAL) atlas were estimated, to compare two HARDI schemes: low b value (b = 1000) and low direction number (n = 32) (LBLD); high b value (b = 3000) and high number (n = 54) of directions (HBHD). RESULTS: LBLD and HBHD data sets produced connectome images with highly overlapping hub structure. Overall, the HBHD scheme yielded significantly higher connection probabilities between cortical and subcortical sites and allowed detecting more connections. Small worldness and modularity were reduced in HBHD data. The clustering coefficient was significantly higher in HBHD data indicating a higher level of segregation in the resulting connectome for the HBHD scheme. CONCLUSION: Our results demonstrate that the HARDI scheme as an impact on structural connectome measures which is not automatically implied by the tractography outcome. As the number of gradient directions and b values applied may introduce a bias in the assessment of network properties, the choice of a given HARDI protocol must be carefully considered when comparing results across connectomic studies.