Cargando…

The Bézier variant of Kantorovich type λ-Bernstein operators

In this paper, we introduce the Bézier variant of Kantorovich type λ-Bernstein operators with parameter [Formula: see text] . We establish a global approximation theorem in terms of second order modulus of continuity and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothn...

Descripción completa

Detalles Bibliográficos
Autor principal: Cai, Qing-Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906583/
https://www.ncbi.nlm.nih.gov/pubmed/29681722
http://dx.doi.org/10.1186/s13660-018-1688-9
_version_ 1783315401661218816
author Cai, Qing-Bo
author_facet Cai, Qing-Bo
author_sort Cai, Qing-Bo
collection PubMed
description In this paper, we introduce the Bézier variant of Kantorovich type λ-Bernstein operators with parameter [Formula: see text] . We establish a global approximation theorem in terms of second order modulus of continuity and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness. Finally, we combine the Bojanic–Cheng decomposition method with some analysis techniques to derive an asymptotic estimate on the rate of convergence for some absolutely continuous functions.
format Online
Article
Text
id pubmed-5906583
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-59065832018-04-20 The Bézier variant of Kantorovich type λ-Bernstein operators Cai, Qing-Bo J Inequal Appl Research In this paper, we introduce the Bézier variant of Kantorovich type λ-Bernstein operators with parameter [Formula: see text] . We establish a global approximation theorem in terms of second order modulus of continuity and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness. Finally, we combine the Bojanic–Cheng decomposition method with some analysis techniques to derive an asymptotic estimate on the rate of convergence for some absolutely continuous functions. Springer International Publishing 2018-04-18 2018 /pmc/articles/PMC5906583/ /pubmed/29681722 http://dx.doi.org/10.1186/s13660-018-1688-9 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Cai, Qing-Bo
The Bézier variant of Kantorovich type λ-Bernstein operators
title The Bézier variant of Kantorovich type λ-Bernstein operators
title_full The Bézier variant of Kantorovich type λ-Bernstein operators
title_fullStr The Bézier variant of Kantorovich type λ-Bernstein operators
title_full_unstemmed The Bézier variant of Kantorovich type λ-Bernstein operators
title_short The Bézier variant of Kantorovich type λ-Bernstein operators
title_sort bézier variant of kantorovich type λ-bernstein operators
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906583/
https://www.ncbi.nlm.nih.gov/pubmed/29681722
http://dx.doi.org/10.1186/s13660-018-1688-9
work_keys_str_mv AT caiqingbo thebeziervariantofkantorovichtypelbernsteinoperators
AT caiqingbo beziervariantofkantorovichtypelbernsteinoperators