Cargando…
The Bézier variant of Kantorovich type λ-Bernstein operators
In this paper, we introduce the Bézier variant of Kantorovich type λ-Bernstein operators with parameter [Formula: see text] . We establish a global approximation theorem in terms of second order modulus of continuity and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothn...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906583/ https://www.ncbi.nlm.nih.gov/pubmed/29681722 http://dx.doi.org/10.1186/s13660-018-1688-9 |
_version_ | 1783315401661218816 |
---|---|
author | Cai, Qing-Bo |
author_facet | Cai, Qing-Bo |
author_sort | Cai, Qing-Bo |
collection | PubMed |
description | In this paper, we introduce the Bézier variant of Kantorovich type λ-Bernstein operators with parameter [Formula: see text] . We establish a global approximation theorem in terms of second order modulus of continuity and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness. Finally, we combine the Bojanic–Cheng decomposition method with some analysis techniques to derive an asymptotic estimate on the rate of convergence for some absolutely continuous functions. |
format | Online Article Text |
id | pubmed-5906583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-59065832018-04-20 The Bézier variant of Kantorovich type λ-Bernstein operators Cai, Qing-Bo J Inequal Appl Research In this paper, we introduce the Bézier variant of Kantorovich type λ-Bernstein operators with parameter [Formula: see text] . We establish a global approximation theorem in terms of second order modulus of continuity and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness. Finally, we combine the Bojanic–Cheng decomposition method with some analysis techniques to derive an asymptotic estimate on the rate of convergence for some absolutely continuous functions. Springer International Publishing 2018-04-18 2018 /pmc/articles/PMC5906583/ /pubmed/29681722 http://dx.doi.org/10.1186/s13660-018-1688-9 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Cai, Qing-Bo The Bézier variant of Kantorovich type λ-Bernstein operators |
title | The Bézier variant of Kantorovich type λ-Bernstein operators |
title_full | The Bézier variant of Kantorovich type λ-Bernstein operators |
title_fullStr | The Bézier variant of Kantorovich type λ-Bernstein operators |
title_full_unstemmed | The Bézier variant of Kantorovich type λ-Bernstein operators |
title_short | The Bézier variant of Kantorovich type λ-Bernstein operators |
title_sort | bézier variant of kantorovich type λ-bernstein operators |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906583/ https://www.ncbi.nlm.nih.gov/pubmed/29681722 http://dx.doi.org/10.1186/s13660-018-1688-9 |
work_keys_str_mv | AT caiqingbo thebeziervariantofkantorovichtypelbernsteinoperators AT caiqingbo beziervariantofkantorovichtypelbernsteinoperators |