Cargando…
Neural-like computing with populations of superparamagnetic basis functions
In neuroscience, population coding theory demonstrates that neural assemblies can achieve fault-tolerant information processing. Mapped to nanoelectronics, this strategy could allow for reliable computing with scaled-down, noisy, imperfect devices. Doing so requires that the population components fo...
Autores principales: | Mizrahi, Alice, Hirtzlin, Tifenn, Fukushima, Akio, Kubota, Hitoshi, Yuasa, Shinji, Grollier, Julie, Querlioz, Damien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906599/ https://www.ncbi.nlm.nih.gov/pubmed/29670101 http://dx.doi.org/10.1038/s41467-018-03963-w |
Ejemplares similares
-
Controlling the phase locking of stochastic magnetic bits for ultra-low power computation
por: Mizrahi, Alice, et al.
Publicado: (2016) -
Synaptic metaplasticity in binarized neural networks
por: Laborieux, Axel, et al.
Publicado: (2021) -
Role of non-linear data processing on speech recognition task in the framework of reservoir computing
por: Abreu Araujo, Flavio, et al.
Publicado: (2020) -
Binding events through the mutual synchronization of spintronic nano-neurons
por: Romera, Miguel, et al.
Publicado: (2022) -
Digital Biologically Plausible Implementation of Binarized Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays
por: Hirtzlin, Tifenn, et al.
Publicado: (2020)