Cargando…

Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization

Super-resolution imaging methods promote tissue characterization beyond the spatial resolution limits of the devices and bridge the gap between histopathological analysis and non-invasive imaging. Here, we introduce motion model ultrasound localization microscopy (mULM) as an easily applicable and r...

Descripción completa

Detalles Bibliográficos
Autores principales: Opacic, Tatjana, Dencks, Stefanie, Theek, Benjamin, Piepenbrock, Marion, Ackermann, Dimitri, Rix, Anne, Lammers, Twan, Stickeler, Elmar, Delorme, Stefan, Schmitz, Georg, Kiessling, Fabian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906644/
https://www.ncbi.nlm.nih.gov/pubmed/29670096
http://dx.doi.org/10.1038/s41467-018-03973-8
_version_ 1783315416004689920
author Opacic, Tatjana
Dencks, Stefanie
Theek, Benjamin
Piepenbrock, Marion
Ackermann, Dimitri
Rix, Anne
Lammers, Twan
Stickeler, Elmar
Delorme, Stefan
Schmitz, Georg
Kiessling, Fabian
author_facet Opacic, Tatjana
Dencks, Stefanie
Theek, Benjamin
Piepenbrock, Marion
Ackermann, Dimitri
Rix, Anne
Lammers, Twan
Stickeler, Elmar
Delorme, Stefan
Schmitz, Georg
Kiessling, Fabian
author_sort Opacic, Tatjana
collection PubMed
description Super-resolution imaging methods promote tissue characterization beyond the spatial resolution limits of the devices and bridge the gap between histopathological analysis and non-invasive imaging. Here, we introduce motion model ultrasound localization microscopy (mULM) as an easily applicable and robust new tool to morphologically and functionally characterize fine vascular networks in tumors at super-resolution. In tumor-bearing mice and for the first time in patients, we demonstrate that within less than 1 min scan time mULM can be realized using conventional preclinical and clinical ultrasound devices. In this context, next to highly detailed images of tumor microvascularization and the reliable quantification of relative blood volume and perfusion, mULM provides multiple new functional and morphological parameters that discriminate tumors with different vascular phenotypes. Furthermore, our initial patient data indicate that mULM can be applied in a clinical ultrasound setting opening avenues for the multiparametric characterization of tumors and the assessment of therapy response.
format Online
Article
Text
id pubmed-5906644
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-59066442018-04-20 Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization Opacic, Tatjana Dencks, Stefanie Theek, Benjamin Piepenbrock, Marion Ackermann, Dimitri Rix, Anne Lammers, Twan Stickeler, Elmar Delorme, Stefan Schmitz, Georg Kiessling, Fabian Nat Commun Article Super-resolution imaging methods promote tissue characterization beyond the spatial resolution limits of the devices and bridge the gap between histopathological analysis and non-invasive imaging. Here, we introduce motion model ultrasound localization microscopy (mULM) as an easily applicable and robust new tool to morphologically and functionally characterize fine vascular networks in tumors at super-resolution. In tumor-bearing mice and for the first time in patients, we demonstrate that within less than 1 min scan time mULM can be realized using conventional preclinical and clinical ultrasound devices. In this context, next to highly detailed images of tumor microvascularization and the reliable quantification of relative blood volume and perfusion, mULM provides multiple new functional and morphological parameters that discriminate tumors with different vascular phenotypes. Furthermore, our initial patient data indicate that mULM can be applied in a clinical ultrasound setting opening avenues for the multiparametric characterization of tumors and the assessment of therapy response. Nature Publishing Group UK 2018-04-18 /pmc/articles/PMC5906644/ /pubmed/29670096 http://dx.doi.org/10.1038/s41467-018-03973-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Opacic, Tatjana
Dencks, Stefanie
Theek, Benjamin
Piepenbrock, Marion
Ackermann, Dimitri
Rix, Anne
Lammers, Twan
Stickeler, Elmar
Delorme, Stefan
Schmitz, Georg
Kiessling, Fabian
Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization
title Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization
title_full Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization
title_fullStr Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization
title_full_unstemmed Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization
title_short Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization
title_sort motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906644/
https://www.ncbi.nlm.nih.gov/pubmed/29670096
http://dx.doi.org/10.1038/s41467-018-03973-8
work_keys_str_mv AT opacictatjana motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT dencksstefanie motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT theekbenjamin motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT piepenbrockmarion motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT ackermanndimitri motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT rixanne motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT lammerstwan motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT stickelerelmar motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT delormestefan motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT schmitzgeorg motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization
AT kiesslingfabian motionmodelultrasoundlocalizationmicroscopyforpreclinicalandclinicalmultiparametrictumorcharacterization