Cargando…
Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization
BACKGROUND: Drug-drug interactions (DDIs) always cause unexpected and even adverse drug reactions. It is important to identify DDIs before drugs are used in the market. However, preclinical identification of DDIs requires much money and time. Computational approaches have exhibited their abilities t...
Autores principales: | Yu, Hui, Mao, Kui-Tao, Shi, Jian-Yu, Huang, Hua, Chen, Zhi, Dong, Kai, Yiu, Siu-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907306/ https://www.ncbi.nlm.nih.gov/pubmed/29671393 http://dx.doi.org/10.1186/s12918-018-0532-7 |
Ejemplares similares
-
Detecting drug communities and predicting comprehensive drug–drug interactions via balance regularized semi-nonnegative matrix factorization
por: Shi, Jian-Yu, et al.
Publicado: (2019) -
TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs
por: Shi, Jian-Yu, et al.
Publicado: (2018) -
A unified solution for different scenarios of predicting drug-target interactions via triple matrix factorization
por: Shi, Jian-Yu, et al.
Publicado: (2018) -
Localized semi-nonnegative matrix factorization (LocaNMF) of widefield calcium imaging data
por: Saxena, Shreya, et al.
Publicado: (2020) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008)