Cargando…

Chromosome positioning in interphase nuclei of hematopoietic stem cell and myeloid precursor

Human myelopoiesis is an intriguing biological process during which multipotent stem cells limit their differentiation potential generating precursors that evolve into terminally differentiated cells. The differentiation process is correlated with differential gene expression and changes in nuclear...

Descripción completa

Detalles Bibliográficos
Autores principales: Lomiento, Mariana, Mammoli, Fabiana, Mazza, Emilia Maria Cristina, Bicciato, Silvio, Ferrari, Sergio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PAGEPress Publications, Pavia, Italy 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907646/
https://www.ncbi.nlm.nih.gov/pubmed/29721254
http://dx.doi.org/10.4081/hr.2018.7515
Descripción
Sumario:Human myelopoiesis is an intriguing biological process during which multipotent stem cells limit their differentiation potential generating precursors that evolve into terminally differentiated cells. The differentiation process is correlated with differential gene expression and changes in nuclear architecture. In interphase, chromosomes are distinct entities known as chromosome territories and they show a radial localization that could result in a constrain of inter-homologous distance. This element plays a role in genome stability and gene expression. Here, we provide the first experimental evidence of 3D chromosomal arrangement considering two steps of human normal myelopoiesis. Specifically, multicolor 3D-FISH and 3D image analysis revealed that, in both normal human hematopoietic stem cells and myelod precursors CD14-, chromosomal position is correlated with gene density. However, we observed that inter-homologue distances are totally different during differentiation. This could be associated with differential gene expression that we found comparing the two cell types. Our results disclose an unprecedented framework relevant for deciphering the genomic mechanisms at the base of normal human myelopoiesis.