Cargando…

Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression

BACKGROUND: Intermittent hypoxia (IH), a typical character of obstructive sleep apnea (OSA), is related to atherogenesis. However, the role of IH on atherosclerosis (AS) progression and the mechanisms involved remains poorly understood. METHODS: In the present study, high-fat fed ApoE(−/−) mice were...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Xianqin, Guo, Rong, Dong, Mei, Zheng, Julia, Lin, Huili, Lu, Huixia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907703/
https://www.ncbi.nlm.nih.gov/pubmed/29673358
http://dx.doi.org/10.1186/s12967-018-1479-6
Descripción
Sumario:BACKGROUND: Intermittent hypoxia (IH), a typical character of obstructive sleep apnea (OSA), is related to atherogenesis. However, the role of IH on atherosclerosis (AS) progression and the mechanisms involved remains poorly understood. METHODS: In the present study, high-fat fed ApoE(−/−) mice were treated with recombinant shRNA-TLR4 lentivirus and exposed to IH. Atherosclerotic lesions on the en face aorta and cross-sections of aortic root were examined by Oil-Red O staining. The content of lipids and collagen of aortic root plaques were detected by Oil-Red O staining and Sirius red staining, respectively. The TLR4, NF-κB p65, α-SMA and MOMA-2 expression in aorta and IL-6 and TNF-α expression in the mice serum were also detected. RESULTS: Compared with the Sham group, the IH treated group further increased atherosclerotic plaque loads and plaque vulnerability in the aortic sinus. Along with increased TLR4 expression, enhanced NF-κB activation, inflammatory activity and aggravated dyslipidemia were observed in the IH treated group. TLR4 interference partly inhibited IH-mediated AS progression with decreased inflammation and improved cholesterol levels. Similarly, in endothelial cells, hypoxia/reoxygenation exposure has been shown to promote TLR4 expression and activation of proinflammatory TLR4/NF-κB signaling, while TLR4 interference inhibited these effects. CONCLUSIONS: We found that the IH accelerated growth and vulnerability of atherosclerotic plaque, which probably acted by triggering the activation of proinflammatory TLR4/NF-κB signaling. These findings may suggest that IH is a risk factor for vulnerable plaque and provide a new insight into the treatment of OSA-induced AS progression.