Cargando…
Collective feature selection to identify crucial epistatic variants
BACKGROUND: Machine learning methods have gained popularity and practicality in identifying linear and non-linear effects of variants associated with complex disease/traits. Detection of epistatic interactions still remains a challenge due to the large number of features and relatively small sample...
Autores principales: | Verma, Shefali S., Lucas, Anastasia, Zhang, Xinyuan, Veturi, Yogasudha, Dudek, Scott, Li, Binglan, Li, Ruowang, Urbanowicz, Ryan, Moore, Jason H., Kim, Dokyoon, Ritchie, Marylyn D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907720/ https://www.ncbi.nlm.nih.gov/pubmed/29713383 http://dx.doi.org/10.1186/s13040-018-0168-6 |
Ejemplares similares
-
Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies
por: Li, Binglan, et al.
Publicado: (2019) -
Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression()
por: Li, Binglan, et al.
Publicado: (2018) -
ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network
por: Kim, Dokyoon, et al.
Publicado: (2013) -
How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
por: Veturi, Yogasudha, et al.
Publicado: (2018) -
Innovative strategies for annotating the “relationSNP” between variants and molecular phenotypes
por: Miller, Jason E., et al.
Publicado: (2019)