Cargando…
Multi-omics integration for neuroblastoma clinical endpoint prediction
BACKGROUND: High-throughput methodologies such as microarrays and next-generation sequencing are routinely used in cancer research, generating complex data at different omics layers. The effective integration of omics data could provide a broader insight into the mechanisms of cancer biology, helpin...
Autores principales: | Francescatto, Margherita, Chierici, Marco, Rezvan Dezfooli, Setareh, Zandonà, Alessandro, Jurman, Giuseppe, Furlanello, Cesare |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907722/ https://www.ncbi.nlm.nih.gov/pubmed/29615097 http://dx.doi.org/10.1186/s13062-018-0207-8 |
Ejemplares similares
-
Integrative Network Fusion: A Multi-Omics Approach in Molecular Profiling
por: Chierici, Marco, et al.
Publicado: (2020) -
Predictability of drug-induced liver injury by machine learning
por: Chierici, Marco, et al.
Publicado: (2020) -
Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma
por: Maggio, Valerio, et al.
Publicado: (2018) -
Evaluating reproducibility of AI algorithms in digital pathology with DAPPER
por: Bizzego, Andrea, et al.
Publicado: (2019) -
A Comparison of MCC and CEN Error Measures in Multi-Class Prediction
por: Jurman, Giuseppe, et al.
Publicado: (2012)