Cargando…
Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifyi...
Autores principales: | Rajaraman, Sivaramakrishnan, Antani, Sameer K., Poostchi, Mahdieh, Silamut, Kamolrat, Hossain, Md. A., Maude, Richard J., Jaeger, Stefan, Thoma, George R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907772/ https://www.ncbi.nlm.nih.gov/pubmed/29682411 http://dx.doi.org/10.7717/peerj.4568 |
Ejemplares similares
-
Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2019) -
Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy
por: Poostchi, Mahdieh, et al.
Publicado: (2018) -
Malaria Screener: a smartphone application for automated malaria screening
por: Yu, Hang, et al.
Publicado: (2020) -
Visualization and Interpretation of Convolutional Neural Network Predictions in Detecting Pneumonia in Pediatric Chest Radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2018) -
Visual Interpretation of Convolutional Neural Network Predictions in Classifying Medical Image Modalities
por: Kim, Incheol, et al.
Publicado: (2019)