Cargando…
Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats
The incretin hormone glucose‐dependent insulinotropic polypeptide (GIP) potentiates glucose‐stimulated insulin secretion, and affects β‐cell turnover. This study aimed at evaluating if some of the beneficial effects of GIP on glucose homeostasis can be explained by modulation of islet blood flow. An...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907939/ https://www.ncbi.nlm.nih.gov/pubmed/29673130 http://dx.doi.org/10.14814/phy2.13685 |
_version_ | 1783315624615739392 |
---|---|
author | Gao, Xiang Lindqvist, Andreas Sandberg, Monica Groop, Leif Wierup, Nils Jansson, Leif |
author_facet | Gao, Xiang Lindqvist, Andreas Sandberg, Monica Groop, Leif Wierup, Nils Jansson, Leif |
author_sort | Gao, Xiang |
collection | PubMed |
description | The incretin hormone glucose‐dependent insulinotropic polypeptide (GIP) potentiates glucose‐stimulated insulin secretion, and affects β‐cell turnover. This study aimed at evaluating if some of the beneficial effects of GIP on glucose homeostasis can be explained by modulation of islet blood flow. Anesthetized Sprague–Dawley rats were infused intravenously with different doses of GIP (10, 20, or 60 ng/kg*min) for 30 min. Subsequent organ blood flow measurements were performed with microspheres. In separate animals, islets were perfused ex vivo with GIP (10(−6)–10(−12) mol/L) during normo‐ and hyperglycemia and arteriolar responsiveness was recorded. The highest dose of GIP potentiated insulin secretion during hyperglycemia, but had no effect in normoglycemic rats. The highest GIP concentration decreased blood perfusion of whole pancreas, pancreatic islets, duodenum, colon, liver and kidneys. The decrease in blood flow was unaffected by ganglion blockade or adenosine receptor inhibition. In contrast to this, in single perfused islets GIP induced a dose‐dependent arteriolar dilation. Thus, high doses of GIP exert a direct dilatory effect on islet arterioles in isolated islets, but induce a generalized vasoconstriction in splanchnic organs, including the whole pancreas and islets, in vivo. The latter effect is unlikely to be mediated by adenosine, the autonomic nervous system, or endothelial mediators. |
format | Online Article Text |
id | pubmed-5907939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59079392018-05-01 Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats Gao, Xiang Lindqvist, Andreas Sandberg, Monica Groop, Leif Wierup, Nils Jansson, Leif Physiol Rep Original Research The incretin hormone glucose‐dependent insulinotropic polypeptide (GIP) potentiates glucose‐stimulated insulin secretion, and affects β‐cell turnover. This study aimed at evaluating if some of the beneficial effects of GIP on glucose homeostasis can be explained by modulation of islet blood flow. Anesthetized Sprague–Dawley rats were infused intravenously with different doses of GIP (10, 20, or 60 ng/kg*min) for 30 min. Subsequent organ blood flow measurements were performed with microspheres. In separate animals, islets were perfused ex vivo with GIP (10(−6)–10(−12) mol/L) during normo‐ and hyperglycemia and arteriolar responsiveness was recorded. The highest dose of GIP potentiated insulin secretion during hyperglycemia, but had no effect in normoglycemic rats. The highest GIP concentration decreased blood perfusion of whole pancreas, pancreatic islets, duodenum, colon, liver and kidneys. The decrease in blood flow was unaffected by ganglion blockade or adenosine receptor inhibition. In contrast to this, in single perfused islets GIP induced a dose‐dependent arteriolar dilation. Thus, high doses of GIP exert a direct dilatory effect on islet arterioles in isolated islets, but induce a generalized vasoconstriction in splanchnic organs, including the whole pancreas and islets, in vivo. The latter effect is unlikely to be mediated by adenosine, the autonomic nervous system, or endothelial mediators. John Wiley and Sons Inc. 2018-04-19 /pmc/articles/PMC5907939/ /pubmed/29673130 http://dx.doi.org/10.14814/phy2.13685 Text en © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Gao, Xiang Lindqvist, Andreas Sandberg, Monica Groop, Leif Wierup, Nils Jansson, Leif Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats |
title | Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats |
title_full | Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats |
title_fullStr | Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats |
title_full_unstemmed | Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats |
title_short | Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats |
title_sort | effects of gip on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907939/ https://www.ncbi.nlm.nih.gov/pubmed/29673130 http://dx.doi.org/10.14814/phy2.13685 |
work_keys_str_mv | AT gaoxiang effectsofgiponregionalbloodflowduringnormoglycemiaandhyperglycemiainanesthetizedrats AT lindqvistandreas effectsofgiponregionalbloodflowduringnormoglycemiaandhyperglycemiainanesthetizedrats AT sandbergmonica effectsofgiponregionalbloodflowduringnormoglycemiaandhyperglycemiainanesthetizedrats AT groopleif effectsofgiponregionalbloodflowduringnormoglycemiaandhyperglycemiainanesthetizedrats AT wierupnils effectsofgiponregionalbloodflowduringnormoglycemiaandhyperglycemiainanesthetizedrats AT janssonleif effectsofgiponregionalbloodflowduringnormoglycemiaandhyperglycemiainanesthetizedrats |