Cargando…

NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in human hypopharyngeal cells

We previously demonstrated that acidic bile activates NF‐κB, deregulating the expression of oncogenic miRNA markers, in pre‐malignant murine laryngopharyngeal mucosa. Here, we hypothesize that the in vitro exposure of human hypopharyngeal cells to acidic bile deregulates cancer‐related miRNA markers...

Descripción completa

Detalles Bibliográficos
Autores principales: Doukas, Sotirios G., Vageli, Dimitra P., Sasaki, Clarence T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908126/
https://www.ncbi.nlm.nih.gov/pubmed/29516639
http://dx.doi.org/10.1111/jcmm.13591
_version_ 1783315663374254080
author Doukas, Sotirios G.
Vageli, Dimitra P.
Sasaki, Clarence T.
author_facet Doukas, Sotirios G.
Vageli, Dimitra P.
Sasaki, Clarence T.
author_sort Doukas, Sotirios G.
collection PubMed
description We previously demonstrated that acidic bile activates NF‐κB, deregulating the expression of oncogenic miRNA markers, in pre‐malignant murine laryngopharyngeal mucosa. Here, we hypothesize that the in vitro exposure of human hypopharyngeal cells to acidic bile deregulates cancer‐related miRNA markers that can be reversed by BAY 11‐7082, a pharmacologic NF‐κB inhibitor. We repetitively exposed normal human hypopharyngeal primary cells and human hypopharyngeal keratinocytes to bile fluid (400 μmol/L), at pH 4.0 and 7.0, with/without BAY 11‐7082 (20 μmol/L). We centred our study on the transcriptional activation of oncogenic miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375, miR‐451a and NF‐κB‐related genes, previously linked to acidic bile‐induced pre‐neoplastic events. Our novel findings in vitro are consistent with our hypothesis demonstrating that BAY 11‐7082 significantly reverses the acidic bile‐induced oncogenic miRNA phenotype, in normal hypopharyngeal cells. BAY 11‐7082 strongly inhibits the acidic bile‐induced up‐regulation of miR‐192 and down‐regulation of miR‐451a and significantly decreases the miR‐21/375 ratios, previously related to poor prognosis in hypopharyngeal cancer. This is the first in vitro report that NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in normal human hypopharyngeal cells, suggesting that acidic bile‐induced events are directly or indirectly dependent on NF‐κB signalling.
format Online
Article
Text
id pubmed-5908126
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-59081262018-05-03 NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in human hypopharyngeal cells Doukas, Sotirios G. Vageli, Dimitra P. Sasaki, Clarence T. J Cell Mol Med Original Articles We previously demonstrated that acidic bile activates NF‐κB, deregulating the expression of oncogenic miRNA markers, in pre‐malignant murine laryngopharyngeal mucosa. Here, we hypothesize that the in vitro exposure of human hypopharyngeal cells to acidic bile deregulates cancer‐related miRNA markers that can be reversed by BAY 11‐7082, a pharmacologic NF‐κB inhibitor. We repetitively exposed normal human hypopharyngeal primary cells and human hypopharyngeal keratinocytes to bile fluid (400 μmol/L), at pH 4.0 and 7.0, with/without BAY 11‐7082 (20 μmol/L). We centred our study on the transcriptional activation of oncogenic miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375, miR‐451a and NF‐κB‐related genes, previously linked to acidic bile‐induced pre‐neoplastic events. Our novel findings in vitro are consistent with our hypothesis demonstrating that BAY 11‐7082 significantly reverses the acidic bile‐induced oncogenic miRNA phenotype, in normal hypopharyngeal cells. BAY 11‐7082 strongly inhibits the acidic bile‐induced up‐regulation of miR‐192 and down‐regulation of miR‐451a and significantly decreases the miR‐21/375 ratios, previously related to poor prognosis in hypopharyngeal cancer. This is the first in vitro report that NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in normal human hypopharyngeal cells, suggesting that acidic bile‐induced events are directly or indirectly dependent on NF‐κB signalling. John Wiley and Sons Inc. 2018-03-08 2018-05 /pmc/articles/PMC5908126/ /pubmed/29516639 http://dx.doi.org/10.1111/jcmm.13591 Text en © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Doukas, Sotirios G.
Vageli, Dimitra P.
Sasaki, Clarence T.
NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in human hypopharyngeal cells
title NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in human hypopharyngeal cells
title_full NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in human hypopharyngeal cells
title_fullStr NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in human hypopharyngeal cells
title_full_unstemmed NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in human hypopharyngeal cells
title_short NF‐κB inhibition reverses acidic bile‐induced miR‐21, miR‐155, miR‐192, miR‐34a, miR‐375 and miR‐451a deregulations in human hypopharyngeal cells
title_sort nf‐κb inhibition reverses acidic bile‐induced mir‐21, mir‐155, mir‐192, mir‐34a, mir‐375 and mir‐451a deregulations in human hypopharyngeal cells
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908126/
https://www.ncbi.nlm.nih.gov/pubmed/29516639
http://dx.doi.org/10.1111/jcmm.13591
work_keys_str_mv AT doukassotiriosg nfkbinhibitionreversesacidicbileinducedmir21mir155mir192mir34amir375andmir451aderegulationsinhumanhypopharyngealcells
AT vagelidimitrap nfkbinhibitionreversesacidicbileinducedmir21mir155mir192mir34amir375andmir451aderegulationsinhumanhypopharyngealcells
AT sasakiclarencet nfkbinhibitionreversesacidicbileinducedmir21mir155mir192mir34amir375andmir451aderegulationsinhumanhypopharyngealcells