Cargando…

Toward a theory of coactivation patterns in excitable neural networks

The relationship between the structural connectivity (SC) and functional connectivity (FC) of neural systems is of central importance in brain network science. It is an open question, however, how the SC-FC relationship depends on specific topological features of brain networks or the models used fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Messé, Arnaud, Hütt, Marc-Thorsten, Hilgetag, Claus C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908206/
https://www.ncbi.nlm.nih.gov/pubmed/29630592
http://dx.doi.org/10.1371/journal.pcbi.1006084
Descripción
Sumario:The relationship between the structural connectivity (SC) and functional connectivity (FC) of neural systems is of central importance in brain network science. It is an open question, however, how the SC-FC relationship depends on specific topological features of brain networks or the models used for describing neural dynamics. Using a basic but general model of discrete excitable units that follow a susceptible—excited—refractory activity cycle (SER model), we here analyze how the network activity patterns underlying functional connectivity are shaped by the characteristic topological features of the network. We develop an analytical framework for describing the contribution of essential topological elements, such as common inputs and pacemakers, to the coactivation of nodes, and demonstrate the validity of the approach by comparison of the analytical predictions with numerical simulations of various exemplar networks. The present analytic framework may serve as an initial step for the mechanistic understanding of the contributions of brain network topology to brain dynamics.