Cargando…
Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization
We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoo...
Autores principales: | Nishio, Mizuho, Nishizawa, Mitsuo, Sugiyama, Osamu, Kojima, Ryosuke, Yakami, Masahiro, Kuroda, Tomohiro, Togashi, Kaori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908232/ https://www.ncbi.nlm.nih.gov/pubmed/29672639 http://dx.doi.org/10.1371/journal.pone.0195875 |
Ejemplares similares
-
Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning
por: Nishio, Mizuho, et al.
Publicado: (2018) -
Automatic inference model construction for computer-aided diagnosis of lung nodule: Explanation adequacy, inference accuracy, and experts’ knowledge
por: Kawagishi, Masami, et al.
Publicado: (2018) -
Automated prediction of emphysema visual score using homology-based quantification of low-attenuation lung region
por: Nishio, Mizuho, et al.
Publicado: (2017) -
Estimation of lung cancer risk using homology-based emphysema quantification in patients with lung nodules
por: Nishio, Mizuho, et al.
Publicado: (2019) -
Temporal subtraction CT with nonrigid image registration improves detection of bone metastases by radiologists: results of a large-scale observer study
por: Onoue, Koji, et al.
Publicado: (2021)