Cargando…

Superhydrophobic WS(2)‐Nanosheet‐Wrapped Sponges for Underwater Detection of Tiny Vibration

Underwater vibration detection is of great importance in personal safety, environmental protection, and military defense. Sealing layers are required in many underwater sensor architectures, leading to limited working‐life and reduced sensitivity. Here, a flexible, superhydrophobic, and conductive t...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Ruixin, Zhang, Kaili, Xu, Xiangyang, He, Minghui, Lu, Fachuang, Su, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908356/
https://www.ncbi.nlm.nih.gov/pubmed/29721413
http://dx.doi.org/10.1002/advs.201700655
Descripción
Sumario:Underwater vibration detection is of great importance in personal safety, environmental protection, and military defense. Sealing layers are required in many underwater sensor architectures, leading to limited working‐life and reduced sensitivity. Here, a flexible, superhydrophobic, and conductive tungsten disulfide (WS(2)) nanosheets‐wrapped sponge (SCWS) is reported for the high‐sensitivity detection of tiny vibration from the water surfaces and from the grounds. When the SCWS is immersed in water, a continuous layer of bubbles forms on its surfaces, providing the sensor with two special abilities. One is sealing‐free feature due to the intrinsic water‐repellent property of SCWS. The other is functioning as a vibration‐sensitive medium to convert mechanical energy into electric signals through susceptible physical deformation of bubbles. Therefore, the SCWS can be used to precisely detect tiny vibration of water waves, and even sense those caused by human footsteps, demonstrating wide applications of this amphibious (water/ground) vibration sensor. Results of this study can initiate the exploration of superhydrophobic materials with elastic and conductive properties for underwater flexible electronic applications.