Cargando…
Saddle Slow Manifolds and Canard Orbits in [Formula: see text] and Application to the Full Hodgkin–Huxley Model
Many physiological phenomena have the property that some variables evolve much faster than others. For example, neuron models typically involve observable differences in time scales. The Hodgkin–Huxley model is well known for explaining the ionic mechanism that generates the action potential in the...
Autores principales: | Hasan, Cris R., Krauskopf, Bernd, Osinga, Hinke M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908812/ https://www.ncbi.nlm.nih.gov/pubmed/29675585 http://dx.doi.org/10.1186/s13408-018-0060-1 |
Ejemplares similares
-
Canard cycles and center manifolds
por: Dumortier, Freddy, et al.
Publicado: (1996) -
Excitable Neurons, Firing Threshold Manifolds and Canards
por: Mitry, John, et al.
Publicado: (2013) -
Observation of B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] and B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] decays
por: Tumasyan, A., et al.
Publicado: (2022) -
[Formula: see text] rule, [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] models with FCNC quark couplings
por: Buras, Andrzej J., et al.
Publicado: (2014) -
A Canard
Publicado: (1884)