Cargando…
Patient-Specific Cardiovascular Computational Modeling: Diversity of Personalization and Challenges
Patient-specific computer models have been developed representing a variety of aspects of the cardiovascular system spanning the disciplines of electrophysiology, electromechanics, solid mechanics, and fluid dynamics. These physiological mechanistic models predict macroscopic phenomena such as elect...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908828/ https://www.ncbi.nlm.nih.gov/pubmed/29512059 http://dx.doi.org/10.1007/s12265-018-9792-2 |
Sumario: | Patient-specific computer models have been developed representing a variety of aspects of the cardiovascular system spanning the disciplines of electrophysiology, electromechanics, solid mechanics, and fluid dynamics. These physiological mechanistic models predict macroscopic phenomena such as electrical impulse propagation and contraction throughout the entire heart as well as flow and pressure dynamics occurring in the ventricular chambers, aorta, and coronary arteries during each heartbeat. Such models have been used to study a variety of clinical scenarios including aortic aneurysms, coronary stenosis, cardiac valvular disease, left ventricular assist devices, cardiac resynchronization therapy, ablation therapy, and risk stratification. After decades of research, these models are beginning to be incorporated into clinical practice directly via marketed devices and indirectly by improving our understanding of the underlying mechanisms of health and disease within a clinical context. |
---|