Cargando…

Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition

CO oxidation is a widely used model system for understanding fundamental aspects of heterogeneous catalysis. While platinum (Pt) continues to be a reference material for CO oxidation catalysis, poisoning of Pt catalysts presents a critical issue that blocks reaction sites and impedes subsequent reac...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiao, Tang, Yuanting, Shen, Meiqing, Li, Wei, Chu, Shengqi, Shan, Bin, Chen, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909126/
https://www.ncbi.nlm.nih.gov/pubmed/29732122
http://dx.doi.org/10.1039/c7sc05486f
_version_ 1783315837821648896
author Liu, Xiao
Tang, Yuanting
Shen, Meiqing
Li, Wei
Chu, Shengqi
Shan, Bin
Chen, Rong
author_facet Liu, Xiao
Tang, Yuanting
Shen, Meiqing
Li, Wei
Chu, Shengqi
Shan, Bin
Chen, Rong
author_sort Liu, Xiao
collection PubMed
description CO oxidation is a widely used model system for understanding fundamental aspects of heterogeneous catalysis. While platinum (Pt) continues to be a reference material for CO oxidation catalysis, poisoning of Pt catalysts presents a critical issue that blocks reaction sites and impedes subsequent reaction steps. Fabrication of CO poison-free Pt catalysts remains a great challenge due to its CO-philic nature. Herein, we report a Pt based catalyst to effectively tackle CO poisoning by tightly anchoring Pt sub-nanoclusters onto Mn-mullite oxide (SmMn(2)O(5)) via atomic layer deposition. Superior CO oxidation activity has been observed with a significantly lowered light-off temperature and apparent activation energy. In situ diffuse reflectance infrared Fourier transform spectroscopy analysis, oxygen isotope experiments and density functional theory calculations confirm that the low-temperature activity originates from active oxygen atom sources at the bifunctional interface structure.
format Online
Article
Text
id pubmed-5909126
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-59091262018-05-04 Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition Liu, Xiao Tang, Yuanting Shen, Meiqing Li, Wei Chu, Shengqi Shan, Bin Chen, Rong Chem Sci Chemistry CO oxidation is a widely used model system for understanding fundamental aspects of heterogeneous catalysis. While platinum (Pt) continues to be a reference material for CO oxidation catalysis, poisoning of Pt catalysts presents a critical issue that blocks reaction sites and impedes subsequent reaction steps. Fabrication of CO poison-free Pt catalysts remains a great challenge due to its CO-philic nature. Herein, we report a Pt based catalyst to effectively tackle CO poisoning by tightly anchoring Pt sub-nanoclusters onto Mn-mullite oxide (SmMn(2)O(5)) via atomic layer deposition. Superior CO oxidation activity has been observed with a significantly lowered light-off temperature and apparent activation energy. In situ diffuse reflectance infrared Fourier transform spectroscopy analysis, oxygen isotope experiments and density functional theory calculations confirm that the low-temperature activity originates from active oxygen atom sources at the bifunctional interface structure. Royal Society of Chemistry 2018-01-26 /pmc/articles/PMC5909126/ /pubmed/29732122 http://dx.doi.org/10.1039/c7sc05486f Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
spellingShingle Chemistry
Liu, Xiao
Tang, Yuanting
Shen, Meiqing
Li, Wei
Chu, Shengqi
Shan, Bin
Chen, Rong
Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition
title Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition
title_full Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition
title_fullStr Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition
title_full_unstemmed Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition
title_short Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition
title_sort bifunctional co oxidation over mn-mullite anchored pt sub-nanoclusters via atomic layer deposition
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909126/
https://www.ncbi.nlm.nih.gov/pubmed/29732122
http://dx.doi.org/10.1039/c7sc05486f
work_keys_str_mv AT liuxiao bifunctionalcooxidationovermnmulliteanchoredptsubnanoclustersviaatomiclayerdeposition
AT tangyuanting bifunctionalcooxidationovermnmulliteanchoredptsubnanoclustersviaatomiclayerdeposition
AT shenmeiqing bifunctionalcooxidationovermnmulliteanchoredptsubnanoclustersviaatomiclayerdeposition
AT liwei bifunctionalcooxidationovermnmulliteanchoredptsubnanoclustersviaatomiclayerdeposition
AT chushengqi bifunctionalcooxidationovermnmulliteanchoredptsubnanoclustersviaatomiclayerdeposition
AT shanbin bifunctionalcooxidationovermnmulliteanchoredptsubnanoclustersviaatomiclayerdeposition
AT chenrong bifunctionalcooxidationovermnmulliteanchoredptsubnanoclustersviaatomiclayerdeposition