Cargando…

Simultaneous dual-contrast multi-phase liver imaging using spectral photon-counting computed tomography: a proof-of-concept study

BACKGROUND: To assess the feasibility of dual-contrast spectral photon-counting computed tomography (SPCCT) for liver imaging. METHODS: We present an SPCCT in-silico study for simultaneous mapping of the complementary distribution in the liver of two contrast agents (CAs) subsequently intravenously...

Descripción completa

Detalles Bibliográficos
Autores principales: Muenzel, Daniela, Daerr, Heiner, Proksa, Roland, Fingerle, Alexander A., Kopp, Felix K., Douek, Philippe, Herzen, Julia, Pfeiffer, Franz, Rummeny, Ernst J., Noël, Peter B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909366/
https://www.ncbi.nlm.nih.gov/pubmed/29708205
http://dx.doi.org/10.1186/s41747-017-0030-5
Descripción
Sumario:BACKGROUND: To assess the feasibility of dual-contrast spectral photon-counting computed tomography (SPCCT) for liver imaging. METHODS: We present an SPCCT in-silico study for simultaneous mapping of the complementary distribution in the liver of two contrast agents (CAs) subsequently intravenously injected: a gadolinium-based contrast agent and an iodine-based contrast agent. Four types of simulated liver lesions with a characteristic arterial and portal venous pattern (haemangioma, hepatocellular carcinoma, cyst, and metastasis) are presented. A material decomposition was performed to reconstruct quantitative iodine and gadolinium maps. Finally, a multi-dimensional classification algorithm for automatic lesion detection is presented. RESULTS: Our simulations showed that with a single-scan SPCCT and an adapted contrast injection protocol, it was possible to reconstruct contrast-enhanced images of the liver with arterial distribution of the iodine-based CA and portal venous phase of the gadolinium-based CA. The characteristic patterns of contrast enhancement were visible in all liver lesions. The approach allowed for an automatic detection and classification of liver lesions using a multi-dimensional analysis. CONCLUSIONS: Dual-contrast SPCCT should be able to visualise the characteristic arterial and portal venous enhancement with a single scan, allowing for an automatic lesion detection and characterisation, with a reduced radiation exposure.