Cargando…
Spoken language identification based on the enhanced self-adjusting extreme learning machine approach
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the stand...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909623/ https://www.ncbi.nlm.nih.gov/pubmed/29672546 http://dx.doi.org/10.1371/journal.pone.0194770 |
_version_ | 1783315936792543232 |
---|---|
author | Albadr, Musatafa Abbas Abbood Tiun, Sabrina AL-Dhief, Fahad Taha Sammour, Mahmoud A. M. |
author_facet | Albadr, Musatafa Abbas Abbood Tiun, Sabrina AL-Dhief, Fahad Taha Sammour, Mahmoud A. M. |
author_sort | Albadr, Musatafa Abbas Abbood |
collection | PubMed |
description | Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. |
format | Online Article Text |
id | pubmed-5909623 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59096232018-05-04 Spoken language identification based on the enhanced self-adjusting extreme learning machine approach Albadr, Musatafa Abbas Abbood Tiun, Sabrina AL-Dhief, Fahad Taha Sammour, Mahmoud A. M. PLoS One Research Article Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. Public Library of Science 2018-04-19 /pmc/articles/PMC5909623/ /pubmed/29672546 http://dx.doi.org/10.1371/journal.pone.0194770 Text en © 2018 Albadr et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Albadr, Musatafa Abbas Abbood Tiun, Sabrina AL-Dhief, Fahad Taha Sammour, Mahmoud A. M. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach |
title | Spoken language identification based on the enhanced self-adjusting extreme learning machine approach |
title_full | Spoken language identification based on the enhanced self-adjusting extreme learning machine approach |
title_fullStr | Spoken language identification based on the enhanced self-adjusting extreme learning machine approach |
title_full_unstemmed | Spoken language identification based on the enhanced self-adjusting extreme learning machine approach |
title_short | Spoken language identification based on the enhanced self-adjusting extreme learning machine approach |
title_sort | spoken language identification based on the enhanced self-adjusting extreme learning machine approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909623/ https://www.ncbi.nlm.nih.gov/pubmed/29672546 http://dx.doi.org/10.1371/journal.pone.0194770 |
work_keys_str_mv | AT albadrmusatafaabbasabbood spokenlanguageidentificationbasedontheenhancedselfadjustingextremelearningmachineapproach AT tiunsabrina spokenlanguageidentificationbasedontheenhancedselfadjustingextremelearningmachineapproach AT aldhieffahadtaha spokenlanguageidentificationbasedontheenhancedselfadjustingextremelearningmachineapproach AT sammourmahmoudam spokenlanguageidentificationbasedontheenhancedselfadjustingextremelearningmachineapproach |