Cargando…
Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data
Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis...
Autores principales: | Ching, Travers, Zhu, Xun, Garmire, Lana X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909924/ https://www.ncbi.nlm.nih.gov/pubmed/29634719 http://dx.doi.org/10.1371/journal.pcbi.1006076 |
Ejemplares similares
-
Two-stage Cox-nnet: biologically interpretable neural-network model for prognosis prediction and its application in liver cancer survival using histopathology and transcriptomic data
por: Zhan, Zhucheng, et al.
Publicado: (2021) -
Diagnosis and Prognosis of COVID-19 Disease Using Routine Blood Values and LogNNet Neural Network
por: Huyut, Mehmet Tahir, et al.
Publicado: (2022) -
More Is Better: Recent Progress in Multi-Omics Data Integration Methods
por: Huang, Sijia, et al.
Publicado: (2017) -
mirMark: a site-level and UTR-level classifier for miRNA target prediction
por: Menor, Mark, et al.
Publicado: (2014) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019)