Cargando…

Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF(Slmb) degron

Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms gove...

Descripción completa

Detalles Bibliográficos
Autores principales: Gray, Kelsey M., Kaifer, Kevin A., Baillat, David, Wen, Ying, Bonacci, Thomas R., Ebert, Allison D., Raimer, Amanda C., Spring, Ashlyn M., Have, Sara ten, Glascock, Jacqueline J., Gupta, Kushol, Van Duyne, Gregory D., Emanuele, Michael J., Lamond, Angus I., Wagner, Eric J., Lorson, Christian L., Matera, A. Gregory
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909936/
https://www.ncbi.nlm.nih.gov/pubmed/29167380
http://dx.doi.org/10.1091/mbc.E17-11-0627
Descripción
Sumario:Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCF(Slmb) ubiquitin E3 ligase complex as a novel SMN binding partner. SCF(Slmb) interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCF(Slmb) binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7(S270A), but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers.