Cargando…

Flux-tunable heat sink for quantum electric circuits

Superconducting microwave circuits show great potential for practical quantum technological applications such as quantum information processing. However, fast and on-demand initialization of the quantum degrees of freedom in these devices remains a challenge. Here, we experimentally implement a tuna...

Descripción completa

Detalles Bibliográficos
Autores principales: Partanen, M., Tan, K. Y., Masuda, S., Govenius, J., Lake, R. E., Jenei, M., Grönberg, L., Hassel, J., Simbierowicz, S., Vesterinen, V., Tuorila, J., Ala-Nissila, T., Möttönen, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910410/
https://www.ncbi.nlm.nih.gov/pubmed/29679059
http://dx.doi.org/10.1038/s41598-018-24449-1
Descripción
Sumario:Superconducting microwave circuits show great potential for practical quantum technological applications such as quantum information processing. However, fast and on-demand initialization of the quantum degrees of freedom in these devices remains a challenge. Here, we experimentally implement a tunable heat sink that is potentially suitable for the initialization of superconducting qubits. Our device consists of two coupled resonators. The first resonator has a high quality factor and a fixed frequency whereas the second resonator is designed to have a low quality factor and a tunable resonance frequency. We engineer the low quality factor using an on-chip resistor and the frequency tunability using a superconducting quantum interference device. When the two resonators are in resonance, the photons in the high-quality resonator can be efficiently dissipated. We show that the corresponding loaded quality factor can be tuned from above 10(5) down to a few thousand at 10 GHz in good quantitative agreement with our theoretical model.