Cargando…
LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran
Due to critical impacts of air pollution, prediction and monitoring of air quality in urban areas are important tasks. However, because of the dynamic nature and high spatio-temporal variability, prediction of the air pollutant concentrations is a complex spatio-temporal problem. Distribution of pol...
Autores principales: | Ghaemi, Z., Alimohammadi, A., Farnaghi, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910457/ https://www.ncbi.nlm.nih.gov/pubmed/29679160 http://dx.doi.org/10.1007/s10661-018-6659-6 |
Ejemplares similares
-
Health impact assessment of air pollution in megacity of Tehran, Iran
por: Naddafi, Kazem, et al.
Publicado: (2012) -
Multiple air pollutant exposure and lung cancer in Tehran, Iran
por: Khorrami, Zahra, et al.
Publicado: (2021) -
Machine Learning Big Data Analysis of the Impact of Air Pollutants on Rhinitis-Related Hospital Visits
por: Lee, Soyeon, et al.
Publicado: (2023) -
Air Pollution, Its Mortality Risk, and Economic Impacts in Tehran, Iran
por: Brajer, V, et al.
Publicado: (2012) -
Prediction mapping of human leptospirosis using ANN, GWR, SVM and GLM approaches
por: Mohammadinia, Ali, et al.
Publicado: (2019)