Cargando…

MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs

BACKGROUND: There are numerous computational tools for taxonomic or functional analysis of microbiome samples, optimized to run on hundreds of millions of short, high quality sequencing reads. Programs such as MEGAN allow the user to interactively navigate these large datasets. Long read sequencing...

Descripción completa

Detalles Bibliográficos
Autores principales: Huson, Daniel H., Albrecht, Benjamin, Bağcı, Caner, Bessarab, Irina, Górska, Anna, Jolic, Dino, Williams, Rohan B. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910613/
https://www.ncbi.nlm.nih.gov/pubmed/29678199
http://dx.doi.org/10.1186/s13062-018-0208-7
_version_ 1783316087686823936
author Huson, Daniel H.
Albrecht, Benjamin
Bağcı, Caner
Bessarab, Irina
Górska, Anna
Jolic, Dino
Williams, Rohan B. H.
author_facet Huson, Daniel H.
Albrecht, Benjamin
Bağcı, Caner
Bessarab, Irina
Górska, Anna
Jolic, Dino
Williams, Rohan B. H.
author_sort Huson, Daniel H.
collection PubMed
description BACKGROUND: There are numerous computational tools for taxonomic or functional analysis of microbiome samples, optimized to run on hundreds of millions of short, high quality sequencing reads. Programs such as MEGAN allow the user to interactively navigate these large datasets. Long read sequencing technologies continue to improve and produce increasing numbers of longer reads (of varying lengths in the range of 10k-1M bps, say), but of low quality. There is an increasing interest in using long reads in microbiome sequencing, and there is a need to adapt short read tools to long read datasets. METHODS: We describe a new LCA-based algorithm for taxonomic binning, and an interval-tree based algorithm for functional binning, that are explicitly designed for long reads and assembled contigs. We provide a new interactive tool for investigating the alignment of long reads against reference sequences. For taxonomic and functional binning, we propose to use LAST to compare long reads against the NCBI-nr protein reference database so as to obtain frame-shift aware alignments, and then to process the results using our new methods. RESULTS: All presented methods are implemented in the open source edition of MEGAN, and we refer to this new extension as MEGAN-LR (MEGAN long read). We evaluate the LAST+MEGAN-LR approach in a simulation study, and on a number of mock community datasets consisting of Nanopore reads, PacBio reads and assembled PacBio reads. We also illustrate the practical application on a Nanopore dataset that we sequenced from an anammox bio-rector community. REVIEWERS: This article was reviewed by Nicola Segata together with Moreno Zolfo, Pete James Lockhart and Serghei Mangul. CONCLUSION: This work extends the applicability of the widely-used metagenomic analysis software MEGAN to long reads. Our study suggests that the presented LAST+MEGAN-LR pipeline is sufficiently fast and accurate.
format Online
Article
Text
id pubmed-5910613
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-59106132018-05-02 MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs Huson, Daniel H. Albrecht, Benjamin Bağcı, Caner Bessarab, Irina Górska, Anna Jolic, Dino Williams, Rohan B. H. Biol Direct Research BACKGROUND: There are numerous computational tools for taxonomic or functional analysis of microbiome samples, optimized to run on hundreds of millions of short, high quality sequencing reads. Programs such as MEGAN allow the user to interactively navigate these large datasets. Long read sequencing technologies continue to improve and produce increasing numbers of longer reads (of varying lengths in the range of 10k-1M bps, say), but of low quality. There is an increasing interest in using long reads in microbiome sequencing, and there is a need to adapt short read tools to long read datasets. METHODS: We describe a new LCA-based algorithm for taxonomic binning, and an interval-tree based algorithm for functional binning, that are explicitly designed for long reads and assembled contigs. We provide a new interactive tool for investigating the alignment of long reads against reference sequences. For taxonomic and functional binning, we propose to use LAST to compare long reads against the NCBI-nr protein reference database so as to obtain frame-shift aware alignments, and then to process the results using our new methods. RESULTS: All presented methods are implemented in the open source edition of MEGAN, and we refer to this new extension as MEGAN-LR (MEGAN long read). We evaluate the LAST+MEGAN-LR approach in a simulation study, and on a number of mock community datasets consisting of Nanopore reads, PacBio reads and assembled PacBio reads. We also illustrate the practical application on a Nanopore dataset that we sequenced from an anammox bio-rector community. REVIEWERS: This article was reviewed by Nicola Segata together with Moreno Zolfo, Pete James Lockhart and Serghei Mangul. CONCLUSION: This work extends the applicability of the widely-used metagenomic analysis software MEGAN to long reads. Our study suggests that the presented LAST+MEGAN-LR pipeline is sufficiently fast and accurate. BioMed Central 2018-04-20 /pmc/articles/PMC5910613/ /pubmed/29678199 http://dx.doi.org/10.1186/s13062-018-0208-7 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Huson, Daniel H.
Albrecht, Benjamin
Bağcı, Caner
Bessarab, Irina
Górska, Anna
Jolic, Dino
Williams, Rohan B. H.
MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs
title MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs
title_full MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs
title_fullStr MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs
title_full_unstemmed MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs
title_short MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs
title_sort megan-lr: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910613/
https://www.ncbi.nlm.nih.gov/pubmed/29678199
http://dx.doi.org/10.1186/s13062-018-0208-7
work_keys_str_mv AT husondanielh meganlrnewalgorithmsallowaccuratebinningandeasyinteractiveexplorationofmetagenomiclongreadsandcontigs
AT albrechtbenjamin meganlrnewalgorithmsallowaccuratebinningandeasyinteractiveexplorationofmetagenomiclongreadsandcontigs
AT bagcıcaner meganlrnewalgorithmsallowaccuratebinningandeasyinteractiveexplorationofmetagenomiclongreadsandcontigs
AT bessarabirina meganlrnewalgorithmsallowaccuratebinningandeasyinteractiveexplorationofmetagenomiclongreadsandcontigs
AT gorskaanna meganlrnewalgorithmsallowaccuratebinningandeasyinteractiveexplorationofmetagenomiclongreadsandcontigs
AT jolicdino meganlrnewalgorithmsallowaccuratebinningandeasyinteractiveexplorationofmetagenomiclongreadsandcontigs
AT williamsrohanbh meganlrnewalgorithmsallowaccuratebinningandeasyinteractiveexplorationofmetagenomiclongreadsandcontigs