Cargando…
Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model
The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910859/ https://www.ncbi.nlm.nih.gov/pubmed/29610313 http://dx.doi.org/10.1073/pnas.1721296115 |
_version_ | 1783316128462798848 |
---|---|
author | Krissansen-Totton, Joshua Arney, Giada N. Catling, David C. |
author_facet | Krissansen-Totton, Joshua Arney, Giada N. Catling, David C. |
author_sort | Krissansen-Totton, Joshua |
collection | PubMed |
description | The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean–Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO(2), which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. |
format | Online Article Text |
id | pubmed-5910859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-59108592018-04-25 Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model Krissansen-Totton, Joshua Arney, Giada N. Catling, David C. Proc Natl Acad Sci U S A Physical Sciences The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean–Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO(2), which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. National Academy of Sciences 2018-04-17 2018-04-02 /pmc/articles/PMC5910859/ /pubmed/29610313 http://dx.doi.org/10.1073/pnas.1721296115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Krissansen-Totton, Joshua Arney, Giada N. Catling, David C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model |
title | Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model |
title_full | Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model |
title_fullStr | Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model |
title_full_unstemmed | Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model |
title_short | Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model |
title_sort | constraining the climate and ocean ph of the early earth with a geological carbon cycle model |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910859/ https://www.ncbi.nlm.nih.gov/pubmed/29610313 http://dx.doi.org/10.1073/pnas.1721296115 |
work_keys_str_mv | AT krissansentottonjoshua constrainingtheclimateandoceanphoftheearlyearthwithageologicalcarboncyclemodel AT arneygiadan constrainingtheclimateandoceanphoftheearlyearthwithageologicalcarboncyclemodel AT catlingdavidc constrainingtheclimateandoceanphoftheearlyearthwithageologicalcarboncyclemodel |