Cargando…
Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape
As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of repo...
Autor principal: | Coupé, Christophe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911484/ https://www.ncbi.nlm.nih.gov/pubmed/29713298 http://dx.doi.org/10.3389/fpsyg.2018.00513 |
Ejemplares similares
-
An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
por: Cheng, Lu, et al.
Publicado: (2019) -
Testability of Instrumental Variables in Linear Non-Gaussian Acyclic Causal Models
por: Xie, Feng, et al.
Publicado: (2022) -
Gaussian and non-Gaussian linear time series and random fields
por: Rosenblatt, Murray
Publicado: (2000) -
Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling
por: Kawashima, Issaku, et al.
Publicado: (2017) -
Non-Gaussianities from the Standard Model Higgs
por: De Simone, Andrea, et al.
Publicado: (2012)