Cargando…
A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking
Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high...
Autores principales: | Han, Jiuqi, Zhao, Yuwei, Sun, Hongji, Chen, Jiayun, Ke, Ang, Xu, Gesen, Zhang, Hualiang, Zhou, Jin, Wang, Changyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911500/ https://www.ncbi.nlm.nih.gov/pubmed/29713262 http://dx.doi.org/10.3389/fnins.2018.00217 |
Ejemplares similares
-
Improving Generalization Based on l(1)-Norm Regularization for EEG-Based Motor Imagery Classification
por: Zhao, Yuwei, et al.
Publicado: (2018) -
A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals
por: ElMoaqet, Hisham, et al.
Publicado: (2022) -
Fast Sleep Stage Classification Using Cascaded Support Vector Machines with Single-Channel EEG Signals
por: Li, Dezhao, et al.
Publicado: (2022) -
Review of EEG-based pattern classification frameworks for dyslexia
por: Perera, Harshani, et al.
Publicado: (2018) -
Fast Compressed Sensing of 3D Radial T(1) Mapping with Different Sparse and Low-Rank Models
por: Paajanen, Antti, et al.
Publicado: (2023)